

IT Systems Engineering | Universität Potsdam

Southampton

School of Electronics and Computer Science

32nd Annual ACM SIGIR '09 Boston, USA, Jul 19-23 2009

Telling Experts from Spammers

Expertise Ranking in Folksonomies

Michael G. Noll Christoph Meinel (Albert) Ching-Man Au Yeung Nicholas Gibbins Nigel Shadbolt

Hasso Plattner Institute Uni Southampton

Introduction

Background

3

Folksonomies and Collaborative Tagging

Large and still increasing popularity in the WWW today

- Idea: Freely annotating resources with keywords aka "tags"
- Result: bottom-up "categorization" by end users, aka "folksonomy"
- Used for organizing resources, sharing, self-promotion, ...
- Additional effect: new means of resource discovery

Motivation

4

Two related goals for our work on expertise in folksonomies:

Identifying and promoting <u>experts</u> for a given <u>topic</u> Weighting user input, giving (better) recommendations, identify trendsetters for marketing/advertising/product promotion, etc.

Topic := conjunction or disjunction of one or more **tags**

Demoting spammers

Reduce impact of spam and junk input thereby improving system quality, performance, operation

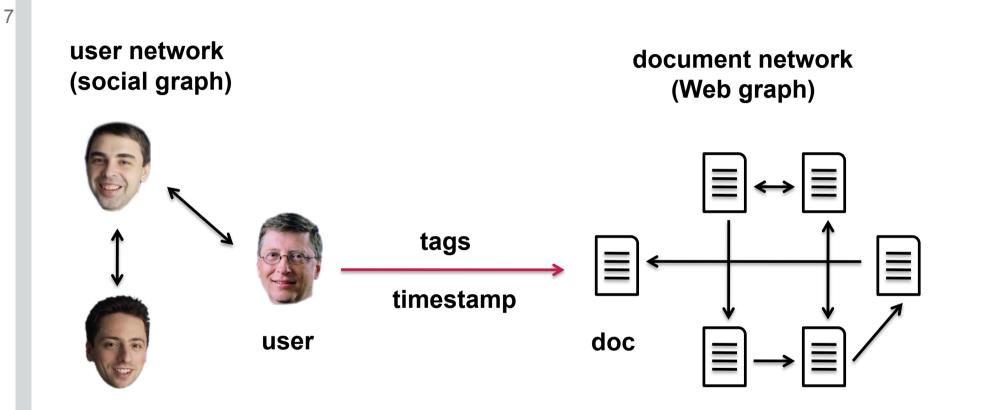
Models

5

What makes an expert an expert?

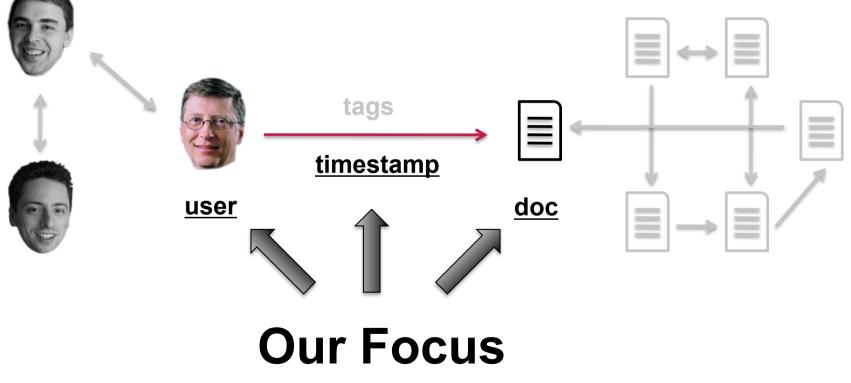
Postulation of two assumptions of <u>expertise for resource discovery</u>, grounded on literature from **computer science** (that's you) and **psychology**

Mutual reinforcement of user expertise and document quality Expert users tend to have many high quality documents, and high quality documents are tagged by users of high expertise.

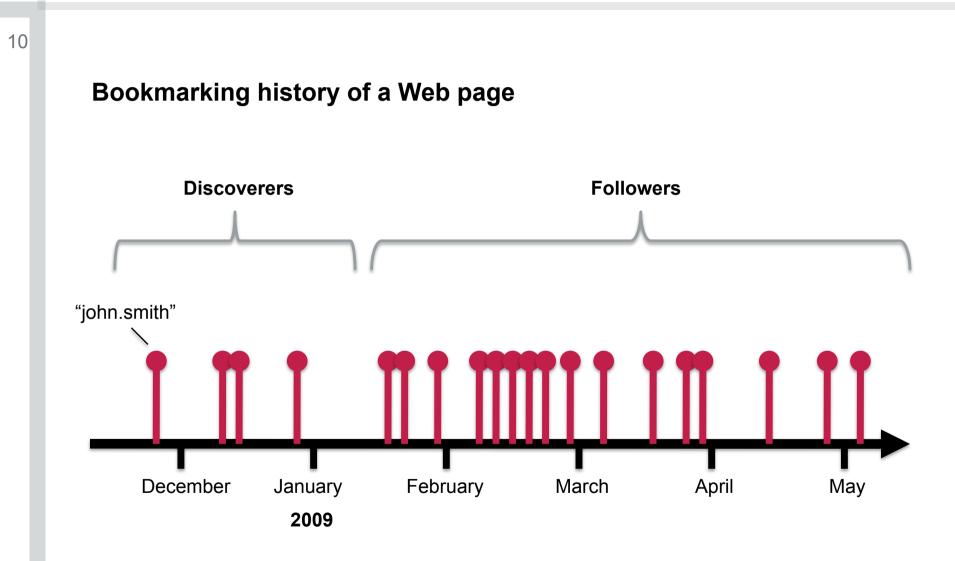


Discoverers vs. followers

Expert users are discoverers – they tend to be the first to bookmark and tag high quality documents, thereby bringing them to the attention of the user community. Think: researchers in academia.

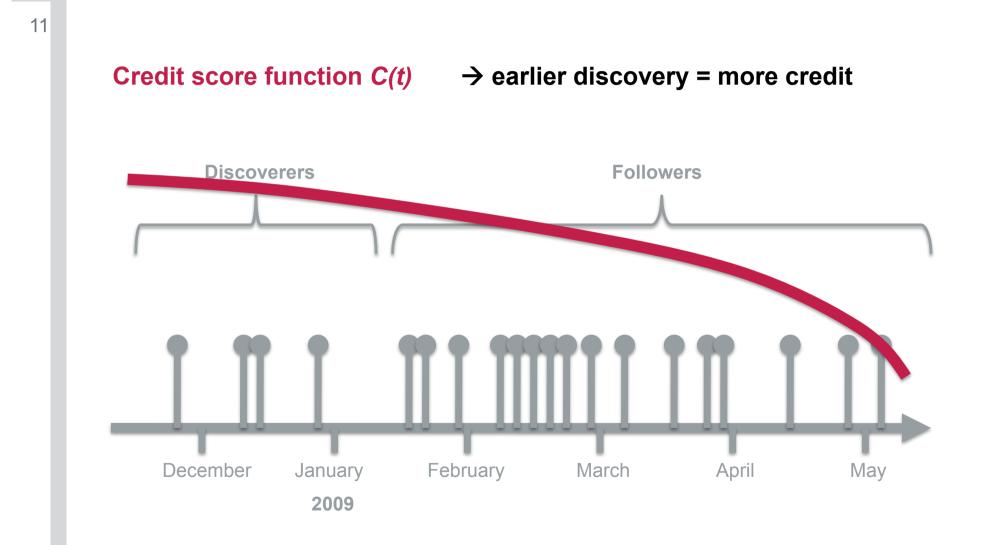

Context of social bookmarking / collaborative tagging

document network (Web graph)


9

Bookmarking history of a Web page on Delicious.com

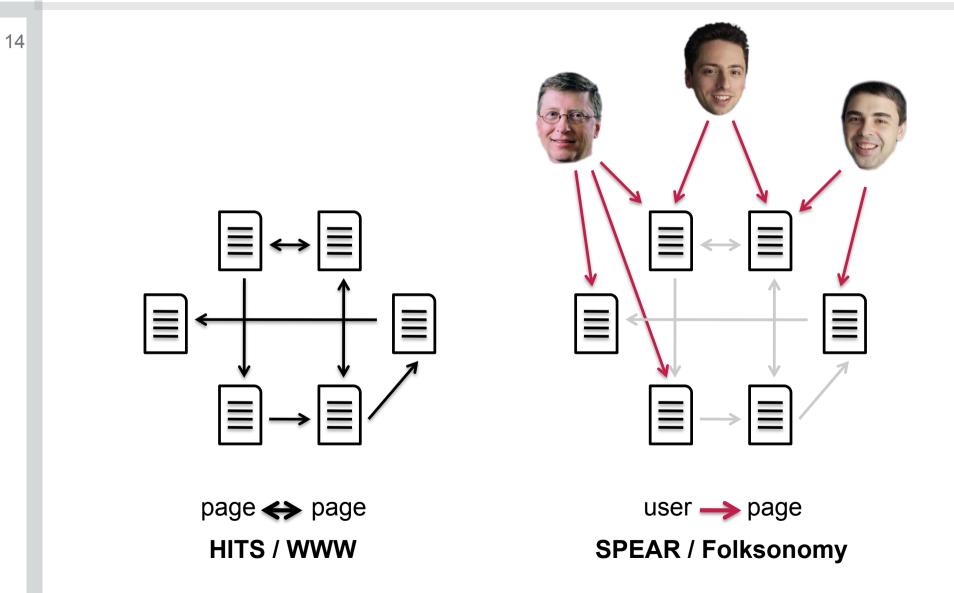
		oop MapReduce Program In Python - Michael G. Noll ikiWriting_An_Hadoop_MapReduce_Program_In_Python	Save this bookmark	
History	People have saved this Note	754 times, and 85 wrote notes. It was first bookmarked on 23 Sep 07, by yogurtboy. Is My Network * Is a member of your Network.	Tags	
			▼ Top Tags	
	Freryone's brokmarks	for this web page	python	62
16 JUL 09	robert.hofstra	python Addoop	hadoop	53
15 JUL 09	A ytsui52	Python hadoop mapreduce	mapreduce	46
			programming	24
11 JUL 09	gregory80		distributed	20
07 JUL 09	ven though the Hadoop framework is written in Java, programs for Hadoop need not to be coded in Java but	cluster	14	
	an also be de reloped ir	n other languages like Python or C++	tutorial	13
	nicc777	apache / java / hadoop / hive / python / programming / cluster	parallel	13
		distributed arallel tutorial	howto	7
04.11.11.000			java	57
01 JUL 09	arbiterski	hadoop	scalability	46
	▶ vborja	python mapreduce hadoop programming tutorial	concurrency	38
30 JUN 09	A drdavel		development	38
30 3010 09	- drdavei	python hadoop mapreduce programming distributed cluster	code	30
		parallel tutorial	performance	29
29 JUN 09	rune.bromer	amazon mapreduce python	algorithm	25
28 JUN 09	hyperluz	programming development python algorithm clustering parallel	reduce	2
20 3014 03	riypenuz	programming development python algorithm clustering parallel hadoop projeto webpage		24
			clustering	24
26 JUN 09		ribe how to write a simple MapReduce program for Hadoop in the Python	database	2:
	rogramming language.		scaling	23
	paulivanov	hadoop python mapreduce programming tutorial distributed	linux	20
l		parallel	google	20



SPEAR Algorithm

Telling Experts from Spammers | Michael G. Noll & Ching-man Au Yeung | SIGIR 2009

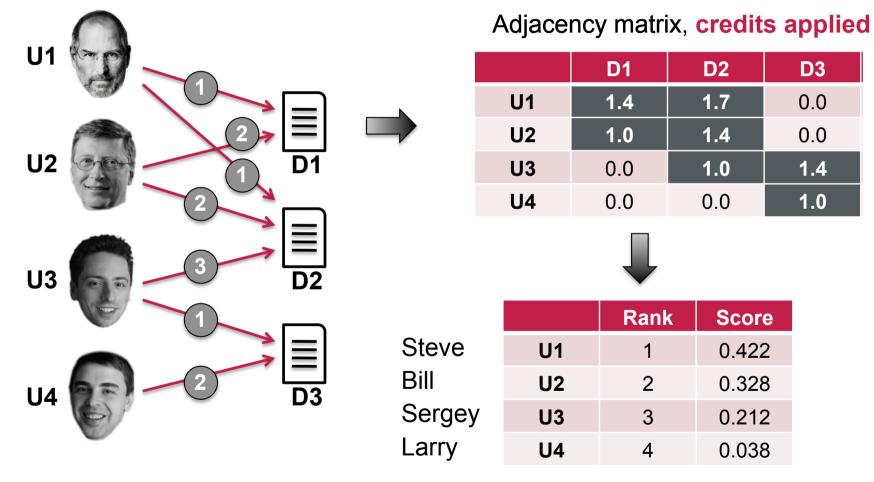
12



SPEAR – <u>SP</u>amming-resistant <u>Expertise</u> <u>A</u>nalysis and <u>R</u>anking

- Based on the HITS (Hypertext Induced Topic Search) algorithm Hubs: pages that points to good pages
 Authorities: pages that are pointed to by good pages
- Expertise and Quality (SPEAR) similar to Hub and Authority (HITS)
 Users are hubs we find useful pages through them
 Pages are authorities provide relevant information
- Difference: only users can point (link) to pages but not vice versa

15


Input Output:	Number of users M Number of pages N Set of taggings R_{tag} = { (user, page, tag, timestamp) tag = tag } Credit score function $C()$ Number of iterations k Ranked list L of users by expertise in topic tag
Output.	Ranked list E of users by expertise in topic tag
Algorithm:	Set E to be the vector $(1, 1,, 1) \in Q^{M}$ Set Q to be the vector $(1, 1,, 1) \in Q^{N}$ $A \in Generate_Adjacency_Matrix(R_{tag}, C)$ for $i = 1$ to $k do$ $E \in Q \times A^{T}$ $Q \in E \times A$ Normalize E Normalize Q endfor $L \in Sort$ users by their expertise score in E return L E = Converting the

Folksonomy (simplified)

16

Ranked list of users by expertise

17

18

Experimental Setup

- Problem: lack of a proper ground truth for expertise
- "Who is the best researcher in this room?" ③
- Workaround: Inserting simulated users into real-world data from Delicious.com and check where they end up after ranking
- Real-world data set from Delicious.com comprising 50 tags with
 - 515,000 real users (and real spammers)
 - 71,300 real Web pages
 - 2,190,000 real social bookmarks

Experimental Setup

- **Probabilistic simulation**, simulated users generated with four parameters
 - P1: Number of user's bookmarks active or inactive user?
 - **P2:** Newness fraction of Web pages not already in data set
 - **P3:** Time preference discoverer or follower?
 - **P4:** Document preference high quality or low quality?

Experimental Setup

- Simulation of 6 different user types
 Profiles (parameter values) based on recent studies + characteristics of our real-world data sets
- Experts
 - Geek lots of high quality documents, discoverer (Distinguished Researcher)
 - Veteran high quality documents, discoverer (Professor)
 - Newcomer high quality documents, follower (PhD student)
- Spammers
 - Flooder lots of random documents, follower (found in Delicious)
 - Promoter some documents (most are his own), discoverer (found in Delicious)
 - Trojan some documents, follower (next-gen spammer)

Performance baselines

FREQ(UENCY)

"Most popular" approach – simple frequency count, looks only at quantity. Seems to be the dominant algorithm in use in practice.

HITS

Algorithm on which SPEAR is based. Uses mutual reinforcement but *does not* analyze temporal dimension of user activity.

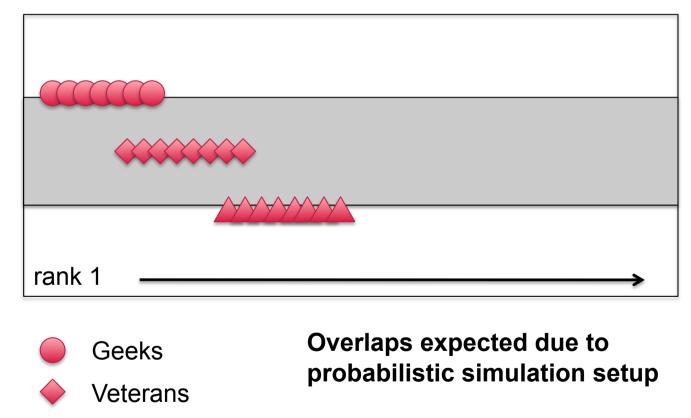
Experimental Results

Telling Experts from Spammers | Michael G. Noll & Ching-man Au Yeung | SIGIR 2009

22

Experts

Telling Experts from Spammers | Michael G. Noll & Ching-man Au Yeung | SIGIR 2009


23

24

Experts: "Ideal" result

Telling Experts from Spammers | Michael G. Noll & Ching-man Au Yeung | SIGIR 2009

Newcomers

25

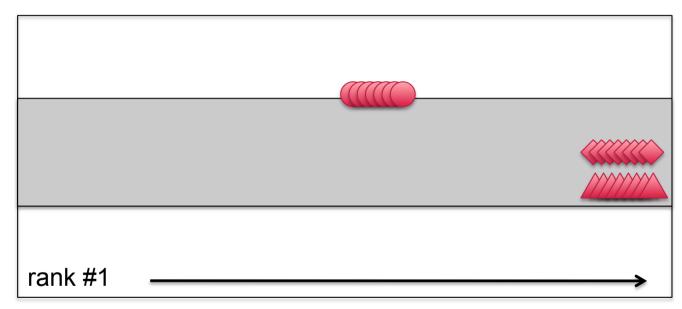
Experimental Results – Promoting **Experts** photography javascript+programming semanticweb Legend SPEAR $\langle \chi \chi \chi \rangle$ O Geek mmmmmmm **Veterans** Algorithms Δ Newcomers HITS FREQ 60 0 10 20 30 40 50 60 0 10 20 30 40 50 0 10 20 30 40 50 60 Rank of Users Rank of Users Rank of Users

- SPEAR differentiated all expert types better than its competitors
- SPEAR kept expected order of "geeks > veterans > newcomers"
- SPEAR was less dependent on user activity (quality before quantity)

Qualitative analysis: manual examination of Top 10 experts for three tags "photography", "semanticweb", "javascript ∩ programming"

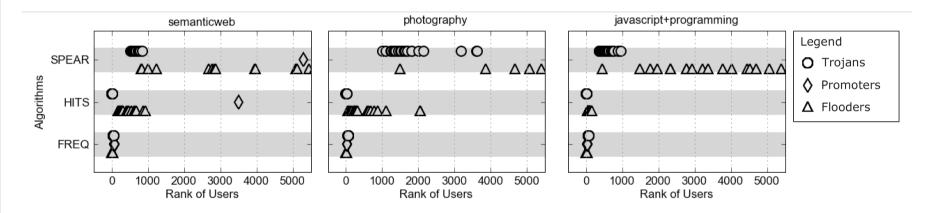
- No spammers found (...phew...)
- These users seemed to be more involved or "serious" about their Delicious usage, e.g. provided optional profile information such as real name, links to their Flickr photos or microblog on Twitter
- Their number of bookmarks: from 100's to 10,000's
- "semanticweb": Semantic Web researcher among the experts
- "javascript ∩ programming": Top 2 experts were professional software developers

Spammers


27

28

Spammers: "Ideal" result



Trojans expected to score higher because they mimic regular users for most of the time

Experimental Results – Demoting **Spammers**

- SPEAR demoted all spammer types significantly more than its competitors
- Only SPEAR demoted all trojans from the TOP 100 ranks
- FREQ completely failed to demote any spammers

Qualitative analysis: manual examination of Top 50 users for the heavily spammed tag "mortgage" (without inserting simulated users)

- Ranked users by their number of bookmarks = FREQ strategy
- 30 out of 50 were (real) spammers, either flooders or promoters
- Compared to FREQ, both SPEAR and HITS were able to remove these spammers from the Top 50
- SPEAR demoted spammers significantly more than HITS

Summary

Telling Experts from Spammers | Michael G. Noll & Ching-man Au Yeung | SIGIR 2009

31

Summary

Conclusions

- SPEAR demoted all spammer types while still ranking experts on top
- SPEAR was much less vulnerable to spammers due to its reduced dependence on the activeness of users: "quality >> quantity"

Future Work

- Quality score of Web pages deserve more investigation
- Transfer to new problem domains, e.g. blogosphere or music
- Follow-up with user & item recommendation, trend detection

Michael G. Noll michael.noll@hpi.uni-potsdam.de Hasso Plattner Institute, LIASIT

Albert Au Yeung cmay06r@ecs.soton.ac.uk University of Southampton