Design and Anatomy of a Social Web Filtering Service

by Michael G. Noll

Int'l conference on Cooperative Internet Computing, Hong Kong, October 2006

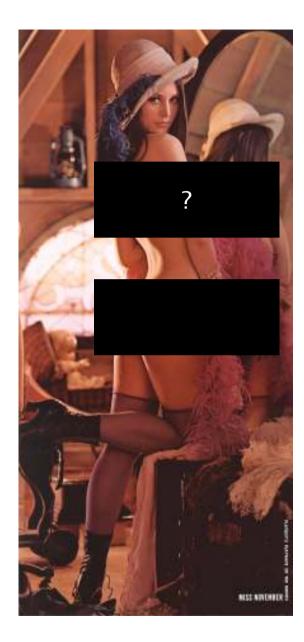

Table of contents

- The problem
- State of the art
- Our approach: social web filtering
- Results and conclusion

"The Internet is not a safe place for users."

=> how can we make it safe(r) ?

Possible answer: "Filter Internet content."

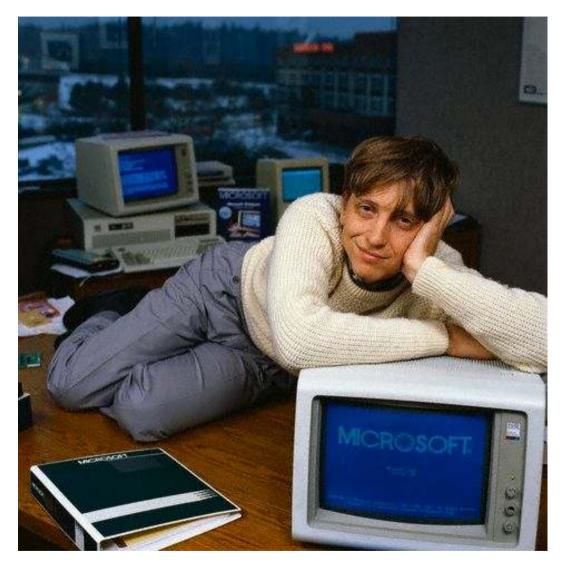

Multitude of reasons to filter Internet content

- fight illegal and objectionable content: child porn, racism, violence, etc.
- protect users
 - UK: 66% of parents want improved Internet filters
 - US: 95% of public schools use filtering software
- protect technical equipment

...however

Multitude of reasons not to filter

- what is "illegal" or "objectionable" ?
- protection vs. censorship
- objectivity vs. subjectivity
 - different interpretation of same content because of culture, education, religion, ...


Art or porn?

Lena, Lena Soderberg

(picture: Playboy, 1972)

October 25, 2006

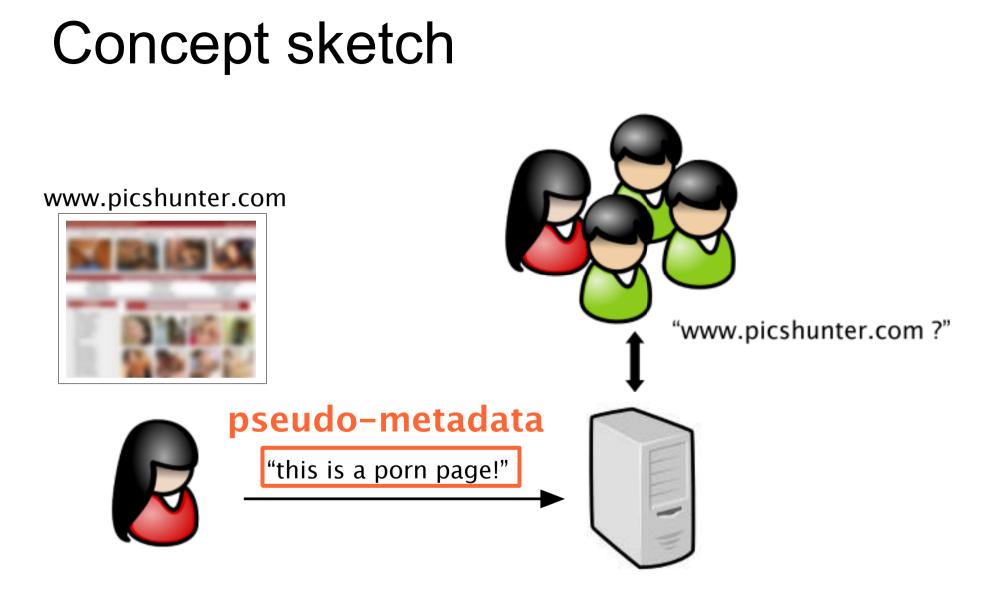
Michael G. Noll - Social Web Filtering

Bill Gates (picture: Teen Beat Photospread, 1983)

October 25, 2006

Michael G. Noll - Social Web Filtering

State of the art


- Filtering of Internet content requires information about content, i.e. metadata
- By content providers
- By third parties
- By computer algorithms

> Can we tackle the problem from a different angle ?

Our approach

- the Wikipedia of Internet content rating
- "power to the people"
- human brain >> computer CPUs
- help users help themselves
- true democracy* of the web

> filter Internet content based on metadata provided by users

Our requirements

- improve quality of collaboratively shared information to get better metadata
 - traditional collaborative filtering: won't work
 - social tagging (folksonomy): so-so
- actively support user collaboration
 - make it easy => user wants to use system
 - make it fast & scalable => user can use system

Defining "rating" (1 of 3)

- collab. filt.: $R \subseteq D \times U \times N$ ~ like/dislike
- tagging: $R \subseteq D \times U \times T$ ~ metadata
- rating: $R \subseteq D \times U \times T \times V$ more metadata

Defining "rating" (2 of 3)

$$R = \{(d, u, t, v) | u rated d with(t, v)\}$$

 $vote_u(d, t) = \begin{cases} 1, \text{ if document } d \text{ is representative for tag } t \\ 0, \text{ else} \end{cases}$

- minimal impact on usability
- effect:
 - explicit IS and IS NOT relationship
 - human users: voting [sic!]

Defining "rating" (3 of 3)

Example: rating a medical website about plastic surgery after breast cancer

- (nudity, 1)
- (surgery, 1)
- (porn, 0)

www.plasticsurgery.org

Design and Anatomy

- first open architecture, coded in Python
- client server
- three main components
 - UID interface = authentication & authorization
 - rating interface = WRITE
 - Iookup interface = READ
- READ >> WRITE

UID interface

- generates (uid, shared_secret) tuples
- authentication & authorization with HMACs
- UIDs for clients, not users
- RFC 4122

• Ex: (A688C654-0C18-11DB-A342-7A1C118AA5B2, Up32xJAc30d)

Rating interface

- REST and XML-RPC over HTTP(S)
- parameters:
 - url, uid, list of (tag, vote) pairs
 - HMAC
 - optional params, e.g. protocol version
- EX: http://...?uid=26AD3620...&url=aHR0cD... &tag=porn&vote=0&auth=VQyMinY81Mdi8uR91xLEQ &protocol=1.0&client=firefox

Storing rating information

- one rating database per client
 - referenced by UID, e.g. /path/<uid>.db
 - hash table: $d_i \longrightarrow \{ (t_{i1}, v_{i1}), \dots, (t_{im}, v_{im}) \}$
 - constant access time, O(1)
 - separation of user data
- bottlenecks: I/O, file system
- tricks: caching, e.g. memcached

Aggregation of ratings

- from client ratings to community ratings
- relevant clients, relevant ratings ?

 $CR \subseteq D \times T \times V$

- here:
 - community = all clients
 - community vote is average of client ratings, V' = [0, 1]
 - 1 community rating database, periodically updated

Aggregation of ratings

Example:

(*d*, *u*₁, porn, 0)

 $(d, u_1, \text{medical}, 1)$

(d, porn, 0.333)

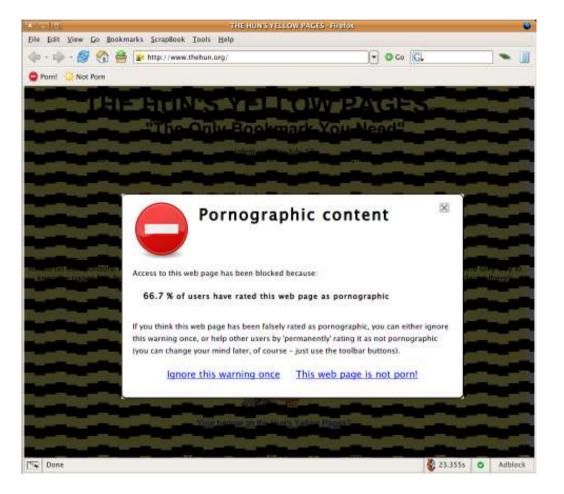
(*d*, *u*₂, porn, 0)

(*d*, *u*₃, porn, 1)

Tricks: load sharing, MapReduce (Hadoop)

Lookup interface

- analogous to rating interface
- three rating types:
 - client "you"
 - community "us"
 - system "them"
- here: client > system > community
- constant access time, O(1)


Global topics

- security
 - authentication & authorization
 - abuse protection
- privacy
 - encryption of communication
 - trusted service

Using the social filtering service

Examples:

- Browser extension
- Web proxy setup

Results and conclusion

new approach to tackle Internet safety

> focus on end users for true web democracy

- new methodology: $R \subseteq D \times U \times T \times V$
- efficient design and implementation

> ease of use + scalability + security

- evaluation and comparison
- tests by internal user groups