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Abstract

Since its inception in the early 1990s, the World Wide Web (or simply the Web) has
shown tremendous growth, providing access to large volumes of information to mil-
lions of people from all over the world. In recent years, the Web has also been increas-
ingly used for social interactions and user collaboration. This development has been
coined the Web 2.0 or Social Web. The Social Web is based upon a technical architec-
ture and a culture of participation that reduce the barriers of online collaboration and
encourage the creation, reuse and distribution of Web content. Particularly, one of the
most prominent features of the Social Web is the concept of collaborative tagging. Tagging
is the act of manually annotating Web resources (e.g. Web pages, images and videos)
with keywords called tags that are created on the fly by users. Basically, it allows Web
users to express their opinions on how the Web should be organized. As more and more
users participate and contribute to collaborative tagging, a new form of classification
scheme emerges that is now commonly referred to as a folksonomy, a portmanteau of
“folk” and “taxonomy”. Folksonomies represent a bottom-up approach to annotating
and organizing resources that is focused on and driven by end users. As such, they are
structurally different from formal, top-down categorization schemes such as ontologies
or taxonomies.

In this thesis, we focus on the analysis of folksonomies and collaborative tagging
in the context of information retrieval on the Web. We conduct empirical studies of
folksonomies and demonstrate how their results can be leveraged to enhance and im-
prove techniques in the research domain. In the first part of the thesis, we present a
comprehensive review of state-of-the-art research on folksonomies and collaborative
tagging. Next, we describe our empirical and explorative studies of the information
and hidden semantics of folksonomies in the context of Web information retrieval. Our
results show that user-contributed data in folksonomies provides new, complimentary
information about Web resources that is not available through an inspection of the con-
tents of these resources or through traditional types of Web metadata, such as informa-
tion provided by the authors of these resources. In the second part of the thesis, we
present three use cases that demonstrate how the knowledge and experimental results
described in the first part can be leveraged for enhancing and improving Web infor-
mation retrieval. Firstly, we investigate the notion of expertise or “trustworthiness” of
users in folksonomies and present our proposed algorithm, SPEAR, for ranking users
by their expertise. We evaluate the algorithm and show that it is also resistant to spam-
ming activities. Secondly, we present our approach to personalization of Web search by
exploiting folksonomies for profiling of users and Web resources and demonstrate how
it can be implemented in practice. Lastly, we explore how the concepts of collaborative
tagging and folksonomies can be exploited for Web filtering. We present a case study
of a working prototype, TaggyBear, and describe and evaluate its system design and
anatomy.
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Zusammenfassung

Seit seinen Ursprüngen in den 1990er Jahren ist das World Wide Web stetig und stark
gewachsen. Heute ermöglicht es Millionen von Menschen den Zugriff auf eine gewaltige
Menge an Daten und Informationen. In den letzten Jahren wird das Web zunehmend
auch für soziale Interaktionen und Kollaborationen von Nutzern verwendet. Für diese
Entwicklung wurde der Begriff Web 2.0 bzw. Soziales Web geprägt. Das Soziale Web
basiert auf einer technischen Architektur und einer Kultur der Partizipation, welche die
Barrieren für Online-Kollaborationen über das Web beseitigen und die Nutzer dazu an-
imieren, Web-Inhalte zu erstellen, wiederzuverwenden und auszutauschen. Eines der
prominentesten Merkmale des Sozialen Webs ist das Konzept des kollaborativen Taggen.
Unter Taggen versteht man das manuelle Annotieren von Web-Ressourcen (z.B. Web-
seiten, Bilder, Videos) mit Schlagworten, welche Tags genannt werden. Im Wesentlichen
können Nutzer durch Taggen ausdrücken, wie ihrer Meinung nach das Web organisiert
werden sollte. Aus diesem kollaborativen Taggen entsteht mit der Zeit eine neue Form
von Klassifizierungsschema, für das sich der Begriff Folksonomie durchgesetzt hat. Folk-
sonomien stellen eine Art basisdemokratischen Ansatz zum Verschlagworten und Or-
ganisieren von Web-Inhalten dar und sind in diesem Sinne strukturell verschieden von
formellen, hierarchischen Ansätzen wie etwa Ontologien oder Taxonomien.

In der vorliegenden Dissertation konzentrieren wir uns auf die Analyse von Folk-
sonomien und kollaborativem Taggen im Forschungsbereich des Web Information Re-
trieval. Wir führen empirische Studien über Folksonomien durch und demonstrieren,
wie deren Ergebnisse dazu verwendet werden können, verschiedene Techniken des
Forschungsbereichs zu erweitern und zu verbessern. Im ersten Teil der Dissertation
präsentieren wir eine umfassende Literaturübersicht aktueller Forschung über Folk-
sonomien und kollaborativem Taggen. Im Anschluss beschreiben wir unsere explo-
rativen Studien über die in Folksonomien versteckten Informationen mit Blick auf das
Web Information Retrieval. Unsere Forschungsergebnisse zeigen, dass Folksonomien
neue, komplimentäre Informationen über Web-Ressourcen enthalten, welche nicht in
deren Inhalten oder anderweitigen Metadaten enthalten sind, wie z.B. in Angaben
der Autoren jener Ressourcen. Im zweiten Teil der Dissertation präsentieren wir an-
hand dreier Anwendungsfälle, wie das Wissen und die experimentellen Ergebnisse
des ersten Teils dazu ausgenutzt werden können, Fortschritte im Bereich des Web In-
formation Retrieval zu erzielen. Zunächst untersuchen wir die Expertise oder “Ver-
trauenswürdigkeit” von Nutzern in Folksonomien und stellen einen Algorithmus na-
mens SPEAR vor, welcher Nutzer ihrer Expertise nach einordnen kann. Wir evaluieren
diesen Algorithmus und weisen nach, dass dieser auch widerstandsfähig gegenüber
Spam-Aktivitäten ist. Im zweiten Schritt präsentieren wir einen Ansatz zur personal-
isierten Suche im Web, welcher Profile von Nutzern und Web-Ressourcen anhand von
Folksonomien erstellt, und zeigen auf, wie dieser Ansatz in der Praxis umgesetzt wer-
den kann. Abschliessend untersuchen wir, wie die Konzepte des kollaborativen Taggen
und der Folksonomien für das Filtern von Web-Inhalten verwendet werden können.
Wir präsentieren eine Fallstudie einer prototypischen Implementierung namens Taggy-
Bear und beschreiben und evaluieren deren Systemdesign und -anatomie.
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All truths are easy to under-
stand once they are discovered;
the point is to discover them.

Galileo Galilei (1564–1642) 1
Introduction

This thesis presents the phenomena of folksonomies and collaborative tagging on the
Social Web. The central theme and main objective is to analyze these user-driven phe-
nomena in order to deepen our understanding of folksonomies, and to leverage this
knowledge for enhancing and improving techniques in the domain of Web information
retrieval.

In this chapter, we will give a short introduction to the Social Web, folksonomies
and the science of Web information retrieval. We will demonstrate the need for and the
benefits of studying folksonomies, and present the research questions we aim to answer
in this thesis. We will summarize our contributions and conclude the chapter with an
overview of the structure of the thesis.

1.1 From the Web to the Social Web

Since its inception in the early 1990s, the World Wide Web (or simply the Web) has shown
tremendous growth. Starting from the first Web server and a few Web pages that were
developed and operated by the “inventor of the Web” Sir Tim Berners-Lee and his team
at CERN1, Switzerland, in 1990, the Web has since evolved into an agglomeration of
more than 230 million Web hosts on the Internet in 20092, which serve an estimated
number of about 20 billion Web pages3. Figure 1.1 illustrates this exploding use of the
Internet and the Web. Nowadays, the Web is a platform that is used by millions of
people to publish and share information “online” and to reference related resources on
the Web through so-called hyperlinks, thereby creating a vast, global network of infor-
mation – true to its name, a literal world wide web – that has revolutionized the way
people disseminate and exchange information. Arguably, the full impact of the Web
on human society has yet to be understood, and even its inventor Sir Berners-Lee, now
director of the World Wide Web Consortium (W3C) and professor at the Massachusetts
Institute of Technology (MIT), has refrained from placing it historically [Lan06].

1European Organization for Nuclear Research, located near Geneva, Switzerland.
2Netcraft.com, November 2009 Web Server Survey, http://news.netcraft.com/archives/2009/
11/10/november_2009_web_server_survey.html, last retrieved on March 01, 2010.

3Statistics by WorldWideWebSize.com, http://www.worldwidewebsize.com/, as reported in Jan-
uary 2010.
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The convenience and speed with which people can retrieve and distribute informa-
tion on the Web is unprecedented in human history [MRS08]. For example, people can
inform themselves about global and local news in real-time, plan trips to remote loca-
tions with online route planners, purchase products via shopping or auction sites, con-
sult each other through online forums, download instruction manuals from the home-
pages of vendors, or perform academic studies through online courses with multimedia
content. The information one needs is often only a few clicks away on the Web.

In recent years, the Web has also been increasingly used for social interactions and
user collaboration, particularly due to advances in Web technologies such as JavaScript,
AJAX (Asynchronous JavaScript and XML) or Adobe Flash that provide a richer, more in-
teractive user experience with the paradigm of “the Web browser is the platform”. This
development on both social and technical levels has been coined the trend of Web 2.04

or Social Web, where Web applications facilitate and stimulate user interactions on the
Web and a surge of user-contributed data such as articles, photos or videos can be ob-
served. In other words, the Social Web allows and entices users to not only retrieve but
also contribute information, since it is based upon a technical architecture and a culture
of participation that reduce the barriers of online collaboration and encourage the gen-
eration, reuse and distribution of Web content [AKTV07, CFL09]. Users are encouraged
to provide data and metadata (data about data), particularly in simple and convenient
ways such as tagging (which we will describe in detail in the following sections), rat-
ings (“I like / I dislike”, “1 out of 5 stars”) and comments (“This book is great!”, “Have
arrived at the conference this morning.”). It can thus be argued that the main difference
between the “original” Web and the Web 2.0 is not a change in terms of technology but
in the form and scale of participation of its users.

As a result, Social Web applications are collecting5 large amounts of user-contributed
data and metadata. For example, the largest encyclopedia ever assembled by mankind
is the Web-based, collaborative Wikipedia6 project, a feat it accomplished in 2007 – af-
ter just six years of operation – by surpassing the Yongle Encyclopedia which held the
record for six centuries. Similarly, users increasingly participate in online communities
and social networks such as Facebook7 (400 million participants [Roo10]) or MySpace8

(125 million participants [Arr09]), where users can keep track of what their friends are
doing. There are also services such as Delicious9 that allow users to collectively orga-
nize and share references to Web resources in an effort to discover and retrieve relevant,
high quality content on the Web. The popularity and impact of these and other online

4The term “Web 2.0” is closely associated with publisher Tim O’Reilly because of the O’Reilly Media
Web 2.0 conference in 2004. According to Tim O’Reilly, the notion of Web 2.0 emerged in a conference
brainstorming session between his publishing company O’Reilly and its conference partner MediaLive
International prior to the actual event [O’R05].

5The collection and analysis of such user-contributed data also lead to privacy issues [OS10], the discus-
sion of which is however out of the scope of this thesis.

6Wikipedia, http://www.wikipedia.org/.
7Facebook, http://www.facebook.com/.
8MySpace, http://www.myspace.com/.
9Delicious, http://www.delicious.com/, a Yahoo! company.
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Figure 1.1: Internet traffic in 2008. The bubbles show the number of Internet users per
country. In the same year, e-commerce spending was 6.8 trillion dollars –
about 15 % of the global gross domestic product (GDP) [New09].

services such as YouTube10 (sharing of videos) and Twitter11 (social “microblogging”, i.e.
publishing very short messages of only a few words to people who have subscribed to
one’s message stream) have recently come to the point of being used, for example, as
communication platforms for supporting political campaigns such as the US presiden-
tial elections in 2008.

1.2 From the Social Web to Folksonomies

As we presented in the previous section, user-contributed information on the Social
Web also includes metadata. For example, users of the photo sharing service Flickr12

may provide additional information (metadata) about a picture (data) stored on Flickr,
such as when, where and how it was taken, what is depicted on the photo or other
contextual information.

Particularly, one of the most prominent features of the Social Web and its applications
is the concept of tagging. Tagging is the act of manually annotating Web resources (e.g.
Web documents, images and videos) with metadata in the form of keywords called
tags that are created on the fly by human users. Basically, tagging allows Web users

10YouTube, http://www.youtube.com/, a Google company.
11Twitter, http://www.twitter.com/.
12Flickr, http://www.flickr.com/, a Yahoo! company.
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to express their opinions on how the Web should be organized. This desire of users
has in fact been around since the Web’s early beginnings: Back in 1997, a user study
already reported that organizing collected information for future retrieval is one of the
most important problems with using the Web [Cor97]. Since there are certain “costs”
associated with tagging a resource (e.g. cognitive costs, costs in terms of time), the act
of tagging is also an indication of the perceived value or usefulness of a resource from
the user’s point of view. Additionally, resources are manually tagged after being read,
watched or otherwise “processed” by users. Tagging thus represents an explicit user
action that happens a posteriori, and is therefore believed to provide more useful and
relevant information than, for example, search query logs [HRS07]. In the latter case,
users must judge the value of a Web resource in the search results a priori, i.e. before
they visit and process the resource13.

When tagging is be performed collectively by a group or community of users on the
Web, it is called collaborative tagging. The collaborative aspect lies in publicly sharing
the information of one’s individual tagging activities with other users. As such, collab-
orative tagging can be considered as a form of the new type of interactions promoted
by the Social Web that involves the three entities of users, tags, and resources. The tech-
nical, Web-based platforms that allow for collaborative tagging are called collaborative
tagging systems. As more and more users participate and contribute to a collaborative
tagging system, a new form of classification scheme emerges. This result of collabora-
tive tagging is now commonly referred to as a folksonomy, a portmanteau of “folk” and
“taxonomy” that was coined in 2004 by Thomas Vander Wal [Smi04]. The term folkson-
omy has since seen widespread use both in academia and on the Web at large, and it has
also often been used interchangeably with terms such as social classification, faceted hier-
archy, ethno-classification or even simply collaborative tagging [Smi04, Mer04, HHLS05].

Folksonomies represent a bottom-up approach to annotating and organizing resources
that is focused on and driven by end users. As such, they are structurally different from
formal, top-down categorization schemes such as ontologies or taxonomies – a typical
example being the Dewey Decimal Classification system [OCL] – and represent a more
democratic way of annotating resources on the Web. Users in folksonomies need nei-
ther to have knowledge of nor to conform to a predefined strategy or vocabulary of
tagging. The advantages of such a light-weight approach include low entry barriers for
new users and low participation costs for the existing user base, and indeed the popu-
larity of collaborative tagging can partly be attributed to the benefits that users perceive
in the ease of annotating resources [Mat04]. Additionally, a collaborative tagging sys-
tem typically demands only a minimal set of requirements from new users joining the
system, for example the provision of a valid email address for registering the user ac-
count. Hence, the user population is often very diverse and comprised of people from
many different backgrounds. For all these reasons, folksonomies are also believed to
allow for higher flexibility and faster adaptation to changes and emerging trends than

13To mitigate this problem, search engines nowadays include text snippets or other contextual information
about a Web resource in search results, and infer implicit positive or negative user feedback on Web
resources by analyzing user click patterns in search results.
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more strict approaches that require a priori coordination and negotiation among their
actors.

Apart from containing information about Web resources, folksonomies are also rich
sources of data about Web users. The tripartite structure of folksonomies, which we
will describe in detail in Chapter 2, means that tags serve a dual purpose as they can
be used to infer information about both users (interests in topics) and resources (topics,
aboutness). As such, tags also act as the intermediary element in folksonomies that can
relate users of similar interests to resources of similar topics.

Finally, folksonomies share a striking similarity with the Web. Manning et al. com-
mented on the Web in 2008 [MRS08]:

“The Web is unprecedented in many ways: unprecedented in scale, un-
precedented in the almost-complete lack of coordination in its creation, and
unprecedented in the diversity of backgrounds and motives of its partici-
pants.”

As we have described above, folksonomies have similar characteristics. Particularly,
both feature a simple, local action that with increasing scale and usage eventually leads
to a huge, complex network structure. On the Web, users can freely create hyperlinks
from one Web resource to another (resource ↔ resource) without conforming to any
predefined rule set or joint strategy. Similarly, users in folksonomies can freely assign
descriptive labels to Web resources (user ↔ tag ↔ resource). While at first glance
these scenarios might result in unorganized, random or chaotic structures, the rela-
tions between the involved entities are in fact not arbitrary in practice. For example,
folksonomies exhibit power law and scale-free behavior – the standard signature of
self-organization and human activity – just like the Web itself [BA99, BAJ00]. Likewise,
they show strong correlations with external trends14 [WZB08].

For all these reasons, folksonomies and collaborative tagging have recently attracted
the attention of the scientific community because they provide a lot of research op-
portunities in a variety of areas such as enhancing the Semantic Web [WZM06, Kne06,
Mik07], improving recommendation systems [SGMB08, WUS09], extending Web search
[BXW+07, NM07b, AGS08a, HKGM08, DMQU10] and computational linguistics [AKD07,
XBCY07, CBHS08]. In Chapter 2, we will present a thorough review of folksonomies
and collaborative tagging. In the following section, we will focus on the relation of
folksonomies to Web information retrieval.

1.3 From Folksonomies to Information Retrieval on the Web

For thousands of years people have realized the importance of archiving and find-
ing information. The practice of archiving written information can be traced back to
around 3000 BC, when the Sumerians designated special areas to store clay tablets with

14A popular Web trend report is the illustrative annual Google Zeitgeist, available at http://www.
google.com/intl/en/press/zeitgeist/index.html.

5

http://www.google.com/intl/en/press/zeitgeist/index.html
http://www.google.com/intl/en/press/zeitgeist/index.html


CHAPTER 1. INTRODUCTION

cuneiform inscriptions. Even then the Sumerians realized that proper organization and
access to the archives was critical for efficient use of information. They developed spe-
cial classifications to identify every tablet and its content. Fast forwarding to more
recent times, librarians have relied on tools such as the Dewey Decimal Classification sys-
tem [OCL], which is used to classify and index books according to a fixed categorization
scheme. With the subsequent advent of computers and the Web, it became possible to
store and access large amounts of information – and finding useful information from
such collections became a necessity. The scientific field of Information Retrieval (IR)
was born out of this necessity [Sin01]. The meaning of the term information retrieval
can be very broad. Just getting a credit card out of your wallet so that you can type in
the card number is a form of information retrieval. However, as an academic field of
study, information retrieval might be defined thus [MRS08]:

“Information retrieval is finding material (usually documents) of an un-
structured nature (usually text) that satisfies an information need from within
large collections (usually stored on computers).”

Web information retrieval in particular focuses on the search and retrieval of relevant
and high quality resources from the Web, and on how the most relevant resources can
be presented to users first through ranking techniques [Cha03, MRS08]. It also covers
supporting users in browsing (navigating) or filtering resource collections or further pro-
cessing a set of retrieved resources.

The advent of folksonomies and collaborative tagging on the Social Web, on the other
hand, has resulted in large volumes of user-contributed annotations of Web resources.
A recent study reports that about one third of Web users has actively participated in
tagging activities already [Rai07]. Consequently, the question arises how this new kind
of information can be analyzed, understood and exploited to extend and improve in-
formation retrieval on the Web.

Traditionally, Web information retrieval has relied on approaches and techniques that
extract data from Web resources directly (e.g. by examining the textual content of a Web
document, similar to classic information retrieval), that analyze Web-specific features
(e.g. the link structure of the Web graph), or that are based on an analysis of the meta-
data about Web resources as provided by their authors (e.g. META DESCRIPTION in-
formation, see below) [CDI98, Bro02, Kan04, KZ04]. The first, content-based approach
has benefited from well-researched techniques in classic information retrieval such as
TF-IDF15 but still suffers from the difficulties of automatically inspecting and under-
standing non-textual Web content such as images and videos, and even textual data is
not trivial to analyze given the huge amount and variety of content on the Web. The
second approach has resulted in several improvements to and advancements in Web
information retrieval such as the PageRank [BP98] and HITS [Kle98] algorithms. The
third approach relies on optional metadata of Web resources that is generally specified

15Term Frequency–Inverse Document Frequency (TF-IDF) is a weight often used in information retrieval
[SB88]. This weight is a statistical measure used to evaluate how important a word (term) is to a
document in a collection or corpus.
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in the META element as defined in the HTML and XHTML standards16. The META ele-
ment allows the author of a Web resource to manually specify metadata such as a short
DESCRIPTION of the document, the DATE of creation or modification, and KEYWORDS
for facilitating the retrieval and analysis of the resource. For example, this metadata
may be used by a search engine to improve the quality of search results.

As we have discussed in the previous section, tags are similarly used to describe
Web resources in many different ways. As such, they can be considered as a form of
metadata for those Web resources to which tags have been assigned by users. But most
interestingly for exploiting folksonomies for Web information retrieval, there is a sig-
nificant difference between tags and traditional Web metadata: Tags are provided by
the readers or recipients of Web content, whereas traditional metadata is specified by
the authors or publishers. Hence, folksonomies reflect the viewpoints of end users and
their perspective on Web content. The information provided by folksonomies is there-
fore believed to be different from traditional data and metadata on the Web because
tags represent the judgements of end users of what a Web resource is about, i.e. its
topics or “aboutness”. For example, user-contributed tags have been found [LGZ08] to
be more appropriate to capture the aboutness of Web resources than automated tech-
niques such as TF-IDF that extract data directly from the content of Web resources and
thus rely on input data provided by the authors of these resources (see illustration in
Table 1.1).

Web resource http://ka1fsb.home.att.net/resolve.html
Top tags linux, dns, networking, howto, sysadmin
Top TF-IDF terms ampr, domain, jnos, nameserver, conf

Table 1.1: Man versus machine. An example of user-generated tags and machine-
generated TF-IDF terms extracted from the content of a Web resource based
on [LGZ08], for which we retrieved updated tag information from the so-
cial bookmarking service Delicious in February 2010. The Web document in
question is a brief introduction to the /etc/resolv.conf file on Linux op-
erating systems that is used for networking and DNS configuration. At the
time of writing, the document was tagged by ten users, the first time in July
2005 and most recently in January 2010. The top tags linux and dns were
assigned to the document by seven and six of these ten users, respectively.

We therefore believe that folksonomies provide new, complimentary information
that can be exploited for enhancing and improving Web information retrieval. How-
ever, several important questions must be answered first, particularly with regard to
the quantity and quality of data available in folksonomies in practice. For instance,
is tagging information abundant or sparse? What kind of tags and what kind of Web
resources are selected by users for annotation? How does information provided by folk-
sonomies compare to other types of Web data and metadata? In the following section,
16XHTML2 Working Group Home Page at W3C, http://www.w3.org/MarkUp/, last retrieved on

March 01, 2010.
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we will describe several research questions in relation to understanding and leveraging
folksonomies for Web information retrieval that we will investigate in this thesis.

1.4 Motivation and Scope of the Thesis

This thesis focuses on the activities of users and their contributed data on the Social
Web with an emphasis on folksonomies and collaborative tagging, and how this infor-
mation can be leveraged for Web information retrieval. Folksonomies and collaborative
tagging have been popular social phenomenons on the Web in recent years, and there-
fore they have attracted the attention of researchers from a wide range of domains,
including for example library science, media studies, social sciences, and of course,
computer science. Although we are studying the dynamics and collective social be-
havior of human users in folksonomies, we approach the issue from the perspective of
computer science and mathematics17.

1.4.1 Research Questions

By conducting the research described in this thesis, we aim at answering the following
research questions:

Research Question 1 (Understanding Folksonomies):
How can we understand the meanings of and extract information from the
user-contributed data in folksonomies for Web information retrieval?

Research Question 2 (Leveraging Folksonomies):
How can we leverage this knowledge in order to create and improve new
applications in Web information retrieval for the benefit of users?

While these two questions are rather general, they are central to this thesis. Firstly,
researchers are still in the process of discovering the characteristics and dynamics of
folksonomies and collaborative tagging systems as well as the hidden semantics of the
data available in these systems as we will see in Chapter 2. Before we can make full use
of folksonomies, we need to find out, for example, how much and what kind of user-
contributed data is available in folksonomies, and how it relates to other types of data
and metadata in the domain of Web information retrieval. Secondly, we are interested
in whether and how folksonomies can be exploited for the benefits of their users. For
example, can we leverage our knowledge of folksonomies to improve the user experi-
ence in collaborative tagging systems or even in other domains of information retrieval
such as Web search? Answering these questions would allow us to gain a better un-
derstanding of the Social Web, to improve applications for the Social Web and for Web

17Albert-László Barabási, well-known for his work on scale-free networks [BA99], has described his math-
ematical studies of usage patterns in user communities and social networks as “computational social
science” [Sti09].
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information retrieval, and, by doing so, to contribute to advancing the current state of
the World Wide Web at large.

In the research work described in this thesis, we will focus our analyses with regard
to Web resources on Web documents (also called “Web pages”), i.e. resources with mainly
textual content. The main reason is that it allows us to compare the content of the re-
source with other Web data and metadata such as tags in a folksonomy or anchor text of
incoming hyperlinks of the resource, which would be very difficult or even impossible
to achieve on a large scale for non-textual resource types such as images or videos18.

1.4.2 Hypotheses

The first research question particularly involves exploratory studies of folksonomies.
Some of the characteristics of folksonomies have yet to be discovered, particularly when
trying to relate and integrate folksonomies into Web information retrieval. We believe
folksonomies are a valuable source of information for Web information retrieval tasks.
Compared to, for example, automated data extraction techniques such as TF-IDF, folk-
sonomies are driven by the best data processor available – the human brain. Users
can easily process and understand even complicated content and media types on the
Web such as images or videos that still pose a challenge even for specialized computer
algorithms. However, we will see in Chapter 2 that one defining feature of collabo-
rative tagging, and arguably one important reason for its popularity and success in
practice, is the freedom it gives to users in terms of how and which resources can be
tagged. This means that we need to explore the dynamics of user behavior in collabo-
rative tagging systems before we can deduce meaningful information from the data of
the folksonomies that emerge from these systems. We believe that folksonomies pro-
vide a sufficient amount of information about Web resources in order to be used as the
data base (no pun intended) on which other applications can be built. Particularly, we
want to study how much data about Web resources is actually provided by users in
folksonomies, and how it compares to traditional types of Web metadata. For example,
are users focusing their tagging activities on resources that are already popular on the
Web, or do they prefer to discover hidden “gems” on the Web? In summary, we test the
following hypothesis regarding the data contributed by users in folksonomies:

Hypothesis 1 (New Perspective on the Web):
User-contributed data in folksonomies provides new, complimentary infor-
mation about Web resources that is not available through traditional types
of data and metadata on the Web, such as metadata contributed by the au-
thors of these resources.

18The ESP game (a collaborative tagging system described in Section 2.1.2) has collected a large volume of
user-contributed image annotations. However, the ESP game makes use of so-called taboo words which
players are not allowed to use for tagging a presented image [vAD04]. These words will usually be
related to the image and make the game harder because they can be words that players commonly use
as guesses. Taboo words thus represent an artificial input filter for user-contributed tags – particularly
those tags that most users might choose if their was no such filter in place – that inhibits the use of ESP
data sets for the research work described in this thesis.

9
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Secondly, we will study the users of folksonomies in particular. The users are the
actors in collaborative tagging systems and the sole source of data contributed to these
systems. This means they are the primary factor that determines the quality of infor-
mation in a folksonomy. Hence, an important question is to what extent we can rely
on the inputs provided by a user. Many collaborative tagging systems in practice, par-
ticularly those that enjoy high popularity among users, demand only a minimal set of
requirements from new users joining the system, for example the provision of a valid
email address for registering the user account. Additionally, they allow anonymous
user accounts where users can act under a pseudonymous username, i.e. the user iden-
tity is neither asked for nor verified. This means that there exists no a priori knowledge
of the “credibility”, “expertise” or “trustworthiness” of a user in a folksonomy. How-
ever, we believe that the expertise or trustworthiness of users can be understood by an
analysis of their activity and implicit interactions in a folksonomy. We simultaneously
believe that such an analysis can also reduce and mitigate the impact of spamming ac-
tivity on a folksonomy. Additionally, such an approach could eventually also be help-
ful to other techniques and methodologies in Web information retrieval, for example
by pre-processing or refining the input information derived from folksonomies before
it is passed to the respective algorithms. In summary, we test the following hypothesis
regarding users in folksonomies:

Hypothesis 2 (User Expertise):
The expertise or trustworthiness of users in a folksonomy can be derived
from an analysis of their activity and implicit interactions within the folks-
onomy.

Thirdly, we will study how to exploit the information about users and Web resources
in a folksonomy. When users annotate Web resources with tags, they do not only pro-
vide information about the Web resources, they also provide information about them-
selves. As we will see in Chapter 2, the use case for tagging a resource is similar to the
traditional notion of bookmarking a Web resource [ABC98]: Tagging represents an ex-
plicit user action that happens a posteriori because resources are manually tagged after
being “processed” by users. Similarly, users tag resources that they are in one or the
other way interested in, and when the “cost” of tagging yields a subjectively perceived
benefit, for example a better future retrieval of the tagged resource. We therefore believe
that folksonomy data provides relevant information that can be exploited for profiling
both users and resources. For the former, tags can be used to model the interests of
users in certain topics. For the later, tags can be used to model the topic(s) that a re-
source is about. In other words, we want to exploit the intermediary function of tags to
relate users of similar interests to resources of similar topics. By developing a method
to re-rank search results based on such user and resource profiles, we believe that folk-
sonomies can thus be exploited for the personalization of Web search. In summary, we
test the following hypothesis regarding information about users and Web resources in
folksonomies:

10
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Hypothesis 3 (Web Search Personalization):
Folksonomies provide sufficiently rich information about users and Web re-
sources to allow for the personalization of Web search, i.e. an individualized
search for resources on the Web.

Finally, we will investigate how the concept of collaborative tagging combined with
the popularity of folksonomies among users can be leveraged for the scenario of Web
filtering. Similarly to the descriptions of Hypothesis 3 (Web Search Personalization) above,
user and resource profiles derived from folksonomies can serve as a starting point for
developing a user-driven content filtering application of the Web, i.e. allowing or block-
ing access to Web resources based on the feedback of end users on these resources.
While automated approaches to understanding Web content would generally be better
suited than manual approaches to cope with the large scale and rapid growth of the
Web, machines still cannot compete with the content processing capabilities and accu-
racy of humans for tasks such as Web page classification or detecting nudity in pho-
tographic images. As we will describe in Chapter 7, existing Web filtering approaches
based on human input – so-called Internet content rating systems – suffer from scal-
ability and acceptance problems in practice. However, based on the recent scientific
findings on the dynamics of collaborative tagging and popularity of folksonomies in
practice, we believe that folksonomies can be leveraged for a new approach to Web
filtering that is based on human feedback on Web content. In summary, we test the
following hypothesis regarding collaborative tagging and folksonomies:

Hypothesis 4 (Web Filtering):
The concepts of folksonomies and collaborative tagging can be exploited
for user-driven filtering of the Web, i.e. allowing or blocking access to Web
resources based on human input.

These four hypotheses and our corresponding research work investigate folksonomies
from different angles and for different problem scenarios while still being very closely
related to each other. All of these studies are highly relevant to the central theme of this
thesis and to answering the research questions presented at the beginning of this sec-
tion: How can we improve our understanding of folksonomies, and how can we derive
value from this knowledge for the benefit of the users in the context of Web information
retrieval? Additionally, the variety of our studies is also an indication of the versatility
and applicability of the information provided by folksonomies on the Web.

11
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1.5 Contributions and Publications

The focus of this thesis lies in the analysis of folksonomies and collaborative tagging in
the context of information retrieval on the Web. It presents empirical studies of folk-
sonomies and demonstrates how their results can be leveraged to enhance and improve
techniques in the research domain. The contributions of this thesis include the follow-
ings:

• We present a comprehensive review of prior research and studies on folksonomies
and collaborative tagging, and discuss related concepts such as manual subject
indexing and ontologies (Chapter 2).

• We construct several large-scale corpuses of experimental data from a variety of
sources such as the collaborative tagging system Delicious, the Web taxonomy of
the Open Directory Project, the search engine Google and the Web itself for studying
the dynamics and characteristics of folksonomies in the context of Web informa-
tion retrieval (Chapter 3).

• We investigate the characteristics, dynamics and hidden semantics of folksonomies
in various dimensions. We analyze and compare user-contributed metadata about
Web resources from folksonomies with the contents of these resources and other
types of Web metadata, for example information provided by the authors of re-
sources, or search keywords in queries of users searching the Web (Chapter 4).

• We discuss the notion of expertise or “trustworthiness” of users in folksonomies.
We propose an algorithm, SPEAR, that implements the idea of ranking users ac-
cording to their expertise, and evaluate it in terms of its effectiveness of ranking
experts and being resistant to malicious spamming activities (Chapter 5).

• We study how the information in folksonomies can be leveraged for personal-
izing Web search and demonstrate how it can be implemented in practice. We
describe our experiments on evaluating the approach and present an analysis of
our experimental results. (Chapter 6).

• We explore how the concepts of collaborative tagging and folksonomies can be
exploited for user-driven filtering of the Web, i.e. allowing or blocking access to
Web resources based on human input. We will present a case study of a working
prototype, TaggyBear, and describe and evaluate its system design and anatomy
(Chapter 7).

In addition, earlier versions of several different parts of this thesis have been pub-
lished and presented at international scientific conferences in the past few years. Simi-
larly, the author of this thesis wrote an invited article for the Internet company Yahoo!19

19Yahoo!, http://www.yahoo.com/.
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about his work on identifying domain experts within their social bookmarking ser-
vice Delicious20. The research work described in Chapter 7 has resulted in a European
and international patent application21, filed in 2008 together with the industrial partner
SES ASTRA S.A.

The full list of publications include the followings:

• Ching-man Au Yeung, Michael G. Noll, Nicholas Gibbins, Christoph Meinel, Nigel
Shadbolt. SPEAR: Spamming-resistant Expertise Analysis and Ranking in Collabora-
tive Tagging Systems. International Journal of Computational Intelligence, Wiley-
Blackwell, 2010 (to appear) [ANG+10].

• Michael G. Noll, Ching-man Au Yeung. How SPEAR Identifies Domain Experts
within Delicious. Invited Article for Yahoo!, 2009 [NA09].

• Michael G. Noll, Ching-man Au Yeung, Nicholas Gibbins, Christoph Meinel, Nigel
Shadbolt. Telling Experts from Spammers: Expertise Ranking in Folksonomies. SIGIR
’09: Proceedings of 32nd ACM Special Interest Group on Information Retrieval
Conference, USA, 2009, ISBN 978-1-60558-483-6 [NAG+09].

• Ching-man Au Yeung, Michael G. Noll, Nicholas Gibbins, Christoph Meinel, Nigel
Shadbolt. On Measuring Expertise in Collaborative Tagging Systems. WebSci ’09: Pro-
ceedings of 1st Web Science Conference ’09, Greece, 2009 [ANG+09].

• Michael G. Noll. Writing a Personal Link Recommendation Engine. Python Maga-
zine, Volume 3, Issue 2, 2009, ISSN 1913-6714 [Nol09].

• Michael G. Noll, Christoph Meinel. The Metadata Triumvirate: Social Annotations,
Anchor Texts and Search Queries, WI ’09: Proceedings of 7th IEEE/WIC/ACM
International Conference on Web Intelligence. IEEE CS Press, Australia, 2008,
ISBN 978-0-7695-3496-1 [NM08c]

• Michael G. Noll, Christoph Meinel. Building a Scalable Collaborative Web Filter
with Free and Open Source Software. SITIS ’08: Proceedings of 4th IEEE Interna-
tional Conference on Signal-Image Technology & Internet-based Systems, IEEE
CS Press, Indonesia, 2008, ISBN 978-0-7695-3493-0 [NM08a].

• Michael G. Noll, Christoph Meinel. Exploring Social Annotations for Web Document
Classification. SAC ’08: Proceedings of 23rd International ACM Symposium on
Applied Computing, Brazil, 2008, ISBN 978-1-59593-753-7 [NM08b].

• Michael G. Noll, Christoph Meinel. Web Search Personalization via Social Bookmark-
ing and Tagging. ISWC ’07: Proceedings of 6th International Semantic Web Confer-
ence & 2nd Asian Semantic Web Conference, Springer LNCS 4825, South Korea,
2007, ISBN 978-3-540-76297-3 [NM07b].

20Delicious, http://www.delicious.com/, a Yahoo! company.
21Patent application “Method for controlling the transfer of data entities from a server unit on a commu-

nication channel” (International Application Number: PCT/EP2008/067735), filed on December 17,
2008.
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• Michael G. Noll, Christoph Meinel. Authors vs. Readers: A Comparative Study of
Document Metadata and Content in the WWW. DocEng ’07: Proceedings of 7th Inter-
national ACM Symposium on Document Engineering, Canada, 2007, ISBN 978-1-
59593-776-6 [NM07a].

• Michael G. Noll, Christoph Meinel. Design and Anatomy of a Social Web Filtering
Service. CIC ’06: Proceedings of 4th International Conference on Cooperative In-
ternet Computing, Hong Kong, 2006, ISBN 978-981-281-109-7 [NM06].

• Michael G. Noll, Christoph Meinel. Web Page Classification: An Exploratory Study of
Internet Content Rating Systems. HACK ’05: Proceedings of 1st HACK Conference,
Luxembourg, 2005, ISBN 978-2-9599708-0-1 [NM05].

1.6 Overview of the Thesis

The thesis is structured as follows. After the introduction presented in this chapter,
Part I will focus on the understanding of folksonomies and collaborative tagging in the
context of Web information retrieval. Chapter 2 will present a literature review, which
will include formal models of folksonomies, a detailed description of their character-
istics and dynamics as well as a comprehensive review of state-of-the-art research on
folksonomies and collaborative tagging. Chapter 3 will describe the major experimen-
tal data sources used in this thesis and discuss why they are suitable targets for our
research. It will introduce the technical tools that we have created and used to collect
data from these sources, and give an overall description of the main experimental data
sets that we have subsequently constructed for our studies presented in the later chap-
ters. Chapter 4 will present our empirical and explorative studies of the information
and hidden semantics of folksonomies in the context of Web information retrieval. It
will describe our analyses and comparisons of metadata in folksonomies about Web
resources with the contents of these resources and other types of Web metadata.

In Part II of the thesis, we will proceed by leveraging the knowledge and experimen-
tal results presented in the first part for enhancing and improving Web information re-
trieval. Chapter 5 will investigate the notion of expertise or “trustworthiness” of users
in folksonomies and present our proposed algorithm, SPEAR, for ranking users by their
expertise. It will describe our experiments on evaluating the algorithm in terms of its
effectiveness of ranking experts and being resistant to malicious spamming activities.
Chapter 6 will present our approach to personalization of Web search by exploiting
folksonomies for profiling of users and Web resources. It will demonstrate how the
approach can be implemented in practice and present our analysis of the experimental
results. Chapter 7 will explore how the concepts of collaborative tagging and folk-
sonomies can be exploited for Web filtering. It will present a case study of a working
prototype, TaggyBear, and describe and evaluate its system design and anatomy.

Part III will conclude the thesis with summarizing its key results. It will discuss the
implications and significance of our research and outline possible research directions
for the future.
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Understanding Folksonomies
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I can calculate the motion of
heavenly bodies, but not the
madness of people.

Sir Isaac Newton (1643–1727) 2
A Review of Folksonomies

Folksonomies are a new form of classification scheme that emerges from the collective
tagging activities of people on the Web, in which they organize and categorize Web
resources through annotations with freely chosen keywords called “tags”. The collabo-
rative aspect lies in publicly sharing the information of one’s individual tagging activ-
ities with other users, which in practice is carried out on Web-based platforms called
collaborative tagging systems. The popularity of such systems and their derived folk-
sonomies among Web users has already come to the point that the size of some user
communities have exceeded the populations of countries such as Australia or Switzer-
land. As a result, folksonomies provide access to large amounts of user-contributed
data that scientists have started to analyze for understanding the characteristics of tag-
ging systems and the dynamics of user behavior, and for leveraging this knowledge
in order to create new applications and services based on information extracted from
folksonomies in a variety of domains.

In this chapter, we present a comprehensive review of folksonomies and collabora-
tive tagging, describe formal models and summarize the results of prior research and
scientific studies on the topic. Due to the scope of this thesis as described in Section 1.4,
we mainly focus on the literature of computer science here, and refer to studies in other
research domains where necessary and appropriate.

2.1 Collaborative Tagging

2.1.1 Overview

As we have noted in the introduction to this chapter, tagging is the act of manually
annotating resources with an unstructured list of keywords or phrases called tags that
are created or selected on the fly by human users [Mat04, HJSS06a]. The collaborative
aspect lies in publicly sharing the information of one’s individual tagging activities
with other users. The technical, Web-based platforms that allow for such collaborative
tagging are called collaborative tagging systems. We have compiled an exemplary list
of popular collaborative tagging systems in Section 2.1.2. Figure 2.1 illustrates the basic
concept of collaborative tagging.

Since collaborative tagging involves human users assigning “labels” to resources, it
can be considered as a form of manual subject indexing, which we describe in more de-
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Figure 2.1: Illustration of the concept of collaborative tagging. In this example, six
users U1-U6 have annotated the homepage of the Hasso Plattner Institute
(www.hpi.uni-potsdam.de) with tags such as research and hpi.

tail together with other related concepts in Section 2.3. However, collaborative tagging
features some significant differences compared to this traditional approach of annotat-
ing resources.

• Lack of a common strategy or goal: In contrast to strict classification systems such
as the Dewey Decimal Classification system [OCL], which is used by librarians to
classify and index books according to a fixed categorization scheme, collaborative
tagging in general does neither require nor expect a joint strategy or goal that all
participants have agreed upon (a priori) or need to follow (a posteriori). Each user
in a collaborative tagging system can freely act as he pleases. One effect is that
users have different incentives and motivations for joining and participating in a
collaborative tagging system as we will examine in Section 2.4.3.

• Lack of a controlled vocabulary: Users need neither to have knowledge of nor to
conform to a predefined, controlled vocabulary for indexing resources. Instead,
the tagging vocabulary of a folksonomy organically grows from the open-ended,
collective tagging activities of its users. The advantages of such a light-weight
approach include low entry barriers for new users and low participation costs for
the existing user base. And indeed, the popularity of collaborative tagging can
partly be attributed to the benefits that users perceive in the ease of annotating
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resources [Mat04]. Additionally, it leads to higher flexibility and fast adaptation
of a collaborative tagging system to changes and emerging trends with regard to
its users and their vocabulary, its resources and its environment in general.

• Powered by end users: In traditional subject indexing, index terms are generally
chosen by the creators or owners of a resource (e.g. keywords in HTML metadata
specified by the author of a Web document), or expert users with specific do-
main knowledge (e.g. by a librarian in the case of books). Collaborative tagging
however is performed by end users, i.e. the recipients or consumers of resources
(e.g. by the reader of a Web document or book). As a result, the former con-
cept involves a rather small set of actors, whereas the latter is driven by masses of
people, hence the often-cited reference to “wisdom of the crowd” [Sur05]. We will
study the effect of this difference between the two groups in Chapter 4 by com-
paring and analyzing data provided by authors and readers of Web documents.
Similarly, a collaborative tagging system typically demands only a minimal set of
requirements from new users joining the system, for example the provision of a
valid email address for registering the user account. Hence, the user population
is often very diverse and comprised of people from many different backgrounds.
It may also range from absolute laymen to domain experts.

As more and more users participate in and contribute to a collaborative tagging sys-
tem, a new form of classification scheme emerges. This result of collaborative tagging
is now commonly referred to as a folksonomy. We will discuss folksonomies in more
detail later in this chapter.

2.1.2 Example Collaborative Tagging Systems

In this section, we provide a brief description of collaborative tagging systems in prac-
tice. There are many others in existence but we have chosen seven that are representa-
tive of the diversity of those that are currently popular and well used. As of 2010, all
these tagging systems are still up and running. Where publicly available, we added sta-
tistical information to give an idea about their scale. Please keep in mind when reading
the numbers below that these systems have existed only for a few years.

• CiteULike (*2004)1: A service for managing and tagging citations and references,
for example academic papers or journals.
210,000 users managing 3.4 million articles from 2004-20092

• Delicious (*2003)3: A social bookmarking service allowing users to save and tag
bookmarks of Web pages and other Web resources, and to share this information

1CiteULike, http://www.citeulike.org/.
2Statistics based on figures from the CiteULike home page, http://www.citeulike.org/, and a

message by Kevin Emamy of CiteULike, http://www.citeulike.org/groupforum/1784, last
retrieved on January 15, 2010.

3Delicious, http://www.delicious.com/.
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with other users. In this thesis, the folksonomy of Delicious is a major source of
experimental data, which we describe in more detail in Section 3.1.1.
5.3 million users managing 180 million unique Web resources from 2003-20084

• ESP game (*2003)5: An online tagging game where users are randomly paired
with each other, and try to guess tags the other would use when presented with a
random image [vAD04].
100 million images tagged from 2003-20086

• Flickr (*2004)7: A photo sharing service allowing users to store and tag their per-
sonal photos, and to share this information with other users. Users can maintain
a network of contacts, join groups and tag photos of other users.
4 billion photos uploaded by users from 2004-20098

• Last.fm (*2002)9: A music service allowing users to discover new music based on
their past listening preferences. Users can tag both songs and artists.
30 million users10 in 2009; 36 billion tracks listened to by users from 2002-2009.

• LibraryThing (*2005)11: An online service allowing users to save and tag their
personal libraries of books, and to share this information with other users [Rit09].
Users can maintain a network of contacts, join groups and discover new books
through the libraries of users with similar reading preferences.
1 million users, 45 million cataloged books (5 million unique works), and 50 million tag
assignments from 2005-200912

• YouTube (*2005)13: A video sharing service allowing users to upload video con-
tent and annotate it with tags.
Third most popular site of the Web14, with 100 million viewers watching 6.3 billion videos
in 200915

4Delicious announcement, http://blog.delicious.com/blog/2008/11/delicious-is-5.
html, last retrieved on March 01, 2010.

5ESP game, http://www.espgame.org/.
6BBC news article, May 14, 2008; http://news.bbc.co.uk/2/hi/technology/7395751.stm, last

retrieved on March 01, 2010.
7Flickr, http://www.flickr.com/.
8Flickr blog post, http://blog.flickr.net/en/2009/10/12/4000000000/, last retrieved on

March 01, 2010.
9Last.fm, http://www.last.fm/.

10Announcement by Last.fm, http://blog.last.fm/2009/03/24/
lastfm-radio-announcement, last retrieved on March 01, 2010

11LibraryThing, http://www.librarything.com/.
12LibraryThing Zeitgeist statistics, http://www.librarything.com/zeitgeist, last retrieved on

March 01, 2010.
13YouTube, http://www.youtube.com/.
14Alexa Rank statistics ranks YouTube right after the websites Google.com and Facebook.com. http:

//www.alexa.com/siteinfo/youtube.com, last retrieved on March 01, 2010.
15ComScore press release, March 4, 2009; http://www.comscore.com/Press_Events/Press_

Releases/2009/3/YouTube_Surpasses_100_Million_US_Viewers, last retrieved on March
01, 2010.
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2.1.3 Design Dimensions

While the various collaborative tagging systems in practice follow the same general
approach to collaborative tagging, there are design differences that have an impact on
the resulting folksonomies [Wal05, MNBD06].

Marlow et al. [MNBD06] developed two tagging taxonomies to analyze how charac-
teristics of system design and user incentives may influence the resultant tags in tagging
systems. They identified the following key design dimensions of tagging systems that
may have immediate and significant effect on the content and usefulness of tags in the
system.

• Tagging rights: Who is allowed to tag resources? For example, tagging may be
restricted to self-tagging (resources may be tagged only by their owners), free-for-
all-tagging (any user can tag any resource) or a more granular, permission-based
mixture of both extremes. According to Marlow et al., tagging rights is arguably
the most important design dimension.

• Tag aggregation: Whether and how tags of a given resource are aggregated.
The main distinction is whether the frequency of a tag applied to the resource
is recorded (bag model, e.g. Delicious) or not (set model, e.g. YouTube and Flickr).
In the former case of a bag model, each user may maintain his own set of tags per
resource.

• Tagging support: Whether and how the tagging system supports users in select-
ing tags, most often in terms of the user interface. In the case of blind tagging, a
user cannot view tags assigned to the same resource by other users while tagging
himself. The opposite approach is viewable tagging, where a user can indeed view
other users’ tags of the same resource. In the case of suggestive tagging, the system
actively suggests or recommends tags to the user. For example, these suggestions
may be based on the user’s personomy Pu or his tagging vocabulary Tu, or be
based on tags assigned to the resource by other users, i.e. the restriction of the
folksonomy F to the given resource r ∈ R16.

• Type of object: The type of resource being tagged. For example, resources may be
Web documents, images, or videos. See also Section 2.1.2. As Marlow et al. note,
any object that can be virtually represented can be tagged or used in a tagging
system.

• Source of material: The origin of the resources. Resources to be tagged can be
supplied by the users (e.g. photos on Flickr, or videos on YouTube), by the sys-
tem (e.g. images in the ESP game [vAD04]), or be publicly available (e.g. Web
documents tagged on Delicious).

16Personomies, tagging vocabularies and other important terms in the context of folksonomies are defined
in the next section on formal models.
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• Resource connectivity: Whether resources can be linked to each other indepen-
dent of tags. The main connectivity categories are linked, grouped, and none. For
example, Web documents are connected by directed hyperlinks (linked), photos
on Flickr can be assigned to photo pools (grouped).

• Social connectivity: Whether users can be linked to each other independent of
tags, i.e. whether users can directly interact in one way or the other.

Collaborative tagging systems also differ on dimensions other than those described
above, for example in terms of features that support users in their tagging activities
(e.g. tag suggestions) or the availability of application programming interfaces (API).
Some tagging systems also extend the general definition of folksonomies described in
Section 2.2 to allow for additional functionality such as user-configurable tagging per-
missions for resources (photo sharing service Flickr) and hierarchical relations between
tags (BibSonomy [HJSS06a]).

2.2 Formal Models of Folksonomies

As more and more users participate and contribute to a collaborative tagging system, a
new form of classification scheme emerges. This result of collaborative tagging is now
commonly referred to as a folksonomy [Smi04]. In the following sections, we present a
thorough review of folksonomies and summarize the result of recent research. We start
our discussions with definitions and a formal model of folksonomies.

2.2.1 Definitions

A folksonomy is in general comprised of three different sets of entities: users, tags, and
resources [Mat04, Mik05, MNBD06].

• Users (set symbol U )
Users assign tags to resources and are thus the active element in collaborative tag-
ging systems and folksonomies. In other words, users provide the actual input for
such systems on which subsequent analyses are based – that’s why we also speak
of “user-generated content” in this context. The set of users is often called the user
community. Depending on the system and its features, the actions and interactions
of users may form implicit or explicit user groups and social networks.

• Tags (set symbol T )
Tags are keywords freely chosen by users to annotate resources, may it be for
describing the content of Web resources (e.g. article), categorizing resources
(e.g. news), expressing personal opinions (e.g. funny) or for other purposes.
While we focus our description of folksonomies in this work on tags in the form
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of single textual terms, tags can also be phrases or combinations of any kind of
symbols and alphabets depending on the context of the system.17

• Resources (set symbolR)
Resources represent the items which are being annotated by users with tags, or
simply tagged in short. The kind of resources depends on the actual system and
may vary widely in practice. For example, users may tag books (e.g. Library-
Thing), music (e.g. Last.fm) photos (e.g. Flickr), videos (e.g. YouTube) or Web
resources in general (e.g. Delicious).

The collection of all users, resources and tags plus the assignments of tags to re-
sources by users are called a folksonomy. In this work, a folksonomy F is formally
defined as follows (cf. [HJSS06a, DS08, MCM+09b]):

Definition 2.2-1 (Folksonomy). A folksonomy is a quadrupleF := (U , T ,R,Y), where
U , T , R are finite sets whose elements are called users, tags and resources, respectively.
Y is a ternary relation18 between these sets, i.e. Y ⊆ U × T ×R, called tag assignments.

An equivalent view of the structure F in Definition 2.2-1 is that of a 3-partite, 3-
regular hypergraph G = (V, E), in which the node set V is partitioned into three dis-
joint sets V = U ∪ T ∪ R, and E = { {u, t, r} | (u, t, r) ∈ Y } is the set of hyperedges
with every hyperedge {u, t, r} consisting exactly of one user, one tag, and one resource
(and thus having a cardinality of three)19.

In comparison to this graph model of folksonomies where undirected triadic hyper-
edges connect three different kinds of entities, the graph model of the World Wide Web
[KRR+00] consists of directed binary edges (hyperlinks) which connect resources with
resources (Web documents), i.e. only entities of the same kind. The relationship be-
tween resources and hyperlinks is a well-researched area, with PageRank [BP98] being
one of the most prominent examples of these studies.

Depending on the context, extended variants of Definition 2.2-1 are used in the liter-
ature and in existing collaborative tagging systems. For instance, temporal information
– e.g. the time when a user assigned a tag to a resource – might be integrated for
tasks such as trend detection as shown exemplarily in Definition 2.2-2. Most studies of
folksonomies in the literature, however, refer to the basic model comprising just three
entities and their relation as described in Definition 2.2-1. Since we focus our studies

17For completeness, we may also allow the use of the special tag t∅, the null tag. The null tag can be used
to create a relation between a user and a resource without requiring the user to specify any tag. The
reasoning behind is that some collaborative tagging systems allow users to manage resources also in
the absence of tag information. For example, a user of the social bookmarking service Delicious may
bookmark a Web resource without specifying any tag. Similarly, a user of the photo sharing service
Flickr may upload a picture without providing any tag information. However, we may safely omit the
null tag for the context of this thesis without loss of generality.

18One way to represent the ternary relation Y is through tensors as described by Wetzker et al. [WZBA10].
19Mika [Mik05] notes that such a graph representation of a folksonomy effectively extends the traditional

bipartite model of ontologies (concepts and instances) by incorporating actors (users) into the model.
In Formal Concept Analysis [GW99], such data structures are called triadic context [LW95].
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bob

alice

slashdot.org cnn.com

hpi.uni-potsdam.de

web research

news

Figure 2.2: An exemplary folksonomy, adapted from [MCM+09b]. Two users alice
and bob have annotated three resources (here: the home pages of CNN, the
Hasso Plattner Institute and Slashdot) using the three tags web, research
and news. The tag assignments (u, t, r) are represented by hyperedges con-
necting a user, a resource and a tag. These six triples correspond to the
following four posts: (alice, {research, web}, hpi.uni-potsdam.de),
(alice, {news}, cnn.com), (bob, {news, web}, slashdot.org) and (bob,
{news}, cnn.com) The personomies of alice and bob comprise the solid
and dotted hyper-edges, respectively.

and analyses on these three entities in this thesis as well, we adopt this basic model of
folksonomies for the remainder of this work.

Definition 2.2-2 (Example: Extended Folksonomy). A folksonomy that includes tem-
poral information of tagging activity is a quintuple Ftemp := (U , T ,R,Y , α), where α is
a function α : Y → c which assigns to each tag assignment y ∈ Y a temporal marker
c ∈ N. It corresponds to the time at which a user assigned a tag to the resource. U , T ,
R, Y are defined as in Definition 2.2-1.

It is often interesting to filter out all the data of specific users within a folksonomy,
the so-called personomies of these users [HJSS06a]. We can define the personomy Pu of
individual users as follows:

Definition 2.2-3 (Personomy). The personomy Pu of a given user u ∈ U is the restric-
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tion of F to u, i.e. Pu := (Tu,Ru, Iu) with Yu := { (t, r) ∈ T × R | (u, t, r) ∈ Y },
Tu := π1(Yu) and Ru := π2(Yu) where πi denotes the projection on the i-th dimen-
sion.20

Definition 2.2-4 (Tagging Vocabulary). The set of tags Tu in Definition 2.2-3 is called
the tagging vocabulary of user u.

For convenience in discussing tagging activity, we refer to a user who tagged a re-
source as tagger.

When discussing folksonomies, it is also helpful to group tag assignments into sev-
eral so-called posts [HJSS06a, DS08]. A post contains all tag assignments made by the
same user to the same resource. In the collaborative tagging system Delicious, for in-
stance, where users create and share bookmarks of Web documents including any asso-
ciated tags, these “social bookmarks” may be appropriately modeled by such posts21.
For this reason, we use the terms post and social bookmark interchangeably throughout
this thesis, and only note specific differences where needed. We define the set P of all
posts in a collaborative tagging system as follows.

Definition 2.2-5 (Posts). The set P(F ) of all posts in a folksonomy F is defined as
P(F ) := { (u, Yu,r, r) | u ∈ U , r ∈ R }, where Yu,r := { t ∈ T | (t, r) ∈ Yu }.

An illustrative example of these definitions is shown in Figure 2.2.

2.2.2 Broad and Narrow Folksonomies

Vander Wal [Wal05] describes the notions of broad and narrow folksonomies, which form
as an effect of the tagging rights and tag aggregation within a collaborative tagging
system (see Section 2.1.3). In a tagging system where multiple users can tag the same
resource and every user can tag the resource with his own tags, a broad folksonomy is
produced. An example of such a broad folksonomy is the social bookmarking service
Delicious, which we describe in more detail in Chapter 3. When only a single, unified
set of tags is maintained per resource, a narrow folksonomy is produced. An example
of such a narrow folksonomy is the photo sharing service Flickr. Figure 2.3 illustrates
the basic concept and differences of broad and narrow folksonomies.

This means that broad folksonomies have a finer data granularity than narrow folk-
sonomies because the latter do not record information such as the frequency of tag as-
signments on a resource or which particular user assigned a tag to the resource. For-
mally speaking, a broad folksonomy keeps track of tagging activity on a resource r via
(u, t, r) triples whereas a narrow folksonomy is restricted to an association of r with
an unstructured set of tags Tr ⊂ T . Broad folksonomies can thus be considered as
a generalization of narrow folksonomies because they can be transformed to narrow
folksonomies but not vice versa.

20In other words, Tu is the user’s tagging vocabulary andRu is the set of resources tagged by the user.
21Please note that in practice Delicious stores additional information in bookmarks such as the title of Web

documents. We disregard these additional properties in this discussion for the sake of simplicity.
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(a) Broad folksonomy

(b) Narrow folksonomy

Figure 2.3: Broad and narrow folksonomies. (a) shows a broad folksonomy, where
each user Ui maintains his own set of tags Tj for each resource Rk, i.e. tag
assignments can be traced back to individual users. (b) shows a narrow
folksonomy, where only one set of tags is jointly maintained for each re-
source.

In the context of this thesis, we therefore focus our attention on broad folksonomies
due to the characteristics outlined above. For the same reason, we use the term folkson-
omy interchangeably with broad folksonomy in this work.

2.3 Concepts Related to Folksonomies

In this section, we describe three concepts related to folksonomies and tagging: subject
indexing, ontologies and taxonomies.

2.3.1 Subject Indexing

Collaborative tagging and folksonomies have gained widespread use in the Internet in
recent years. However, the underlying concept of using keywords (tags) to describe
documents (resources) has been around for much longer. In various fields, the act of
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describing a document by keywords in order to indicate what the document is about
or to summarize its content is studied and known as subject indexing [Lan98]. Subject
indexing is concerned with creating a representation of a resource in order to facilitate
its retrieval at a later time. While there may be different incentives and motivations for
annotating resources with tags on the World Wide Web [AN07, RW08a, Kip08], collab-
orative tagging can be regarded as a form of manual indexing and, fundamentally, as a
vocabulary problem in indexing [MM06].

Manual indexing and subject indexing in general are not trivial tasks and face several
challenges in practice. The indexing process is comprised of two main steps: conceptual
analysis and translation [Lan98]. Conceptual analysis is concerned with deciding on the
subject matter of a resource, i.e. the topics addressed by the resource. Translation is
the subsequent task to assign a set of subject descriptors commonly known as index
terms to a resource based on the previous conceptual analysis. These selected index
terms are derived from a larger set of index terms known as an indexing language which
constitutes a defined set of terms utilizing established conventions for ordering and
combining terms [MM06]. As an example of subject indexing, a human indexer might
decide that an article is a scientific essay and addresses research in biology and assign
the index terms “research”, “biology”, “essay” to the article.

However, such judgements are influenced by the characteristics of the individual in-
dexer such as his knowledge, background, interests, motivations or experience. Two
indexers may analyze and perceive the same resource differently which may result in
different index terms [Hoo65]. In Chapter 4, we will analyze usage patterns in collab-
orative tagging systems and folksonomies in the World Wide Web and show that they
exhibit similar effects.

A notable difference between subject indexing and collaborative tagging is that the
former involves a so-called controlled vocabulary that is used to control and structure
the indexing process a priori, whereas the latter opts for an “everything goes” policy.
The interested reader may refer to the study of Macgregor and McCulloch [MM06]
for a comparison of such controlled vocabularies with uncontrolled vocabularies as in
collaborative tagging.

2.3.2 Ontologies

The term ontology has its origin in philosophy, where it is the name of one fundamental
branch of metaphysics concerned with analyzing various types or modes of existence.
In the field of computer science, an ontology is “an explicit and formal specification
of a conceptualization” [Gru95]. In the context of the Semantic Web, the Web Ontol-
ogy Language (OWL) and the knowledge representation language Resource Description
Framework Schema (RDFS) – both under the umbrella of the W3C and its director Sir
Berners-Lee – are means to construct such ontologies. What an ontology has in com-
mon in both computer science and philosophy is the representation of ideas (classes)
and entities (individuals) together with their properties (attributes) and relations.

Next to general studies of ontologies (the discussion of which is beyond the scope
of this work), there have been several studies in the literature that compare ontologies
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with folksonomies and analyze their relation.
Christiaens [Chr06] compared the weaknesses and strengths of ontologies and folk-

sonomies. He observed that folksonomies tend to provide quantitative but flexible data,
while ontologies could deliver more qualitative but static data. Halpin et al. argue that
formal ontologies are of great utility in highly structured domains such as biology, but
that collaborative tagging may be a better way of organizing information in other do-
mains such as documents on the World Wide Web [HRS07]. They observed that even in
an open-ended domain such as Web documents, there was some consensus about how
to categorize the information. Zhang et al. [ZWY06] discuss some of the problems that
the “top-down” approach of the Semantic Web and ontologies face as well as why and
how the “bottom-up” approach of the Social Web and folksonomies could help.

Mika [Mik05, Mik07] extends the traditional bipartite model of ontologies to a tri-
partite model of actors, concepts and instances by integrating the social dimension
(cf. Section 2.2). He demonstrates how community-based semantics emerge from this
model through a process of graph transformation, and illustrates the emergence of a
light-weight ontology with a case study of the folksonomy of social bookmarking ser-
vice Delicious. Similarly, Schmitz [Sch06] describes how to induce an ontology from
the tag vocabulary of the photo sharing service Flickr by using a subsumption-based
model. On the opposite end of the spectrum, there are approaches such as those of
Knerr [Kne06] and Kim et al. [KSB+08] to create ontologies for describing the con-
cept of tagging, i.e. an ontology for folksonomies. Lastly, there is the Annotea project
[KK01] of the W3C. Even though it does not provide an ontology for describing the con-
cept of a tagging, it defines an RDF Schema for bookmarking and annotating resources
[KSKP03], which is a similar concept.

2.3.3 Taxonomies

A taxonomy is a classification scheme with hierarchical structure [Kne06]. A typical and
often cited example for a taxonomy is the Dewey Decimal Classification system [OCL],
which is used by librarians to classify books according to a fixed categorization scheme
and organize them into shelves. In the digital world, typical examples of taxonomies
are the Open Directory Project (ODP) (described in Section 3.1.2) and the Yahoo! Direc-
tory22. Both of them provide a directory of Web resources organized in a fixed set of
categories.

While a taxonomy is “hierarchical and exclusive”, a folksonomy is “non-hierarchical
and inclusive” [GH06]. A folksonomy arises from the free-form annotation of Web
resources, done by its users, and without the constraints of a predefined taxonomy
[WZY06]. According to Rui Li et al.[LBY+07], similar tags are assigned to similar re-
sources in a folksonomy, and vice versa. They show that there is not a neat tree struc-
ture for folksonomies, i.e. they do not exhibit rigid hierarchies or pre-defined categories
with clear tag boundaries as is the case for taxonomies or ontologies. Tags are rather
located at different semantic levels in the tagging space.

22Yahoo! Directory, http://dir.yahoo.com/.
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While folksonomies evolve without adhering to any pre-defined policies as is the case
for taxonomies and ontologies, we will see in Section 2.4.4 that the tag distribution for
each resource still yields a “stable” pattern over time. This means that – given a critical
mass of taggers – there will be a few tags for each resource that are most prominent
and selected by most of the users to describe that particular resource [GH06], and thus
represent the common understanding of the resource from the viewpoint of users.

2.4 Characteristics of Folksonomies

Folksonomies are driven by the collaborative actions of their users. The characteristics
of folksonomies therefore depend on the dynamics and patterns of such user behavior.
In the following sections, we examine some of these characteristics and summarize the
current state of research. Due to the frequent debate about the benefits and drawbacks
of using folksonomies as a means for organizing and annotating resources, we start our
discussion with an overview of the strengths and weaknesses of folksonomies.

2.4.1 Strengths

Several studies have analyzed the semantic aspects of collaborative tagging and folk-
sonomies, why they are so popular and successful in practice [Mat04, GH06, MNBD06,
WZY06, AN07]. In the following paragraphs, we summarize these findings.

Low entry and participation costs

In contrast to more “heavy-weight” approaches such as ontologies, a user does not need
extensive domain knowledge or training prior to using a collaborative tagging system
[WZY06]. Basically, he can just start using the system as he sees fit. That said, system
designers can use various tricks and techniques23 to guide their user community in
finding common usage patterns and support them in finding a common direction.

Individual and community aspects

Collaborative tagging strikes a balance between the individual and the community: the
cost of participation – particularly for entering data – is low, and tagging a resource
benefits both the individual and the community. This has also a positive effect on the
quality of data in a folksonomy: the study of Heymann et al. [HKGM08] found that
most tags were deemed relevant and objective by users, i.e. tags are on the whole
accurate.

23These techniques include tag suggestions and recommendations, for instance showing the most popular
tags of a resource within the community, i.e. through analyzing existing information in F about the
resource, or inferring potentially useful tags from the user’s tagging vocabulary Tu by identifying
similar resources already stored in his personomy Pu.
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Personalization and customization

Users can pick their own terms for labeling resources with tags, i.e. they have full
control over their personal tagging vocabulary Tu. Strictly speaking, the tags used to
annotate a resource with need to make sense only to them (which includes using their
native language instead of being limited to the user interface language that the collab-
orative tagging system offers), and as such they are not required to use – or to know
about – any predefined categories or taxonomies. This freedom also improves the re-
trieval of any resources in a user’s personomy Pu because he can obtain information
more quickly by using his own words to describe resources.

Adaptability

Top-down classification schemes such as taxonomies or ontologies are usually slow to
respond to changes to their environment. By definition, the process to predefine such
schemes is time-consuming and may depend on the consensus of any involved parties.
In contrast, collaborative tagging systems do not put any constraints on their users – a
folksonomy F evolves bottom-up based on its users’ individual personomies Pu (and
tagging vocabularies Tu). The effect is that new terms t′ /∈ T and new resources r′ /∈ R
– and thus new information in general – can enter the folksonomy very quickly and can
be readily used by its participants.

Feedback and asymmetric communication

Udell [Ude04] argues that the idea of abandoning top-down categorization approaches
such as taxonomies in favor of flat lists of keywords (as is tagging) is not new, and that
the fundamental difference between these systems is feedback. In collaborative tagging
systems such as Delicious or Flickr, the feedback is instantaneous: As soon as a user
assigns a tag to a resource, he can see how other users tagged the same item, or see the
cluster of resources annotated with the same tag. The user can immediately verify how
he relates to the community, and he is given an incentive to rethink his actions. He may
chose to adapt to the group norm by changing the tag or adding another, to stick to his
actions in a bid to influence the group norm, or to do both. Mathes [Mat04] argues that
this tight feedback loop leads to a form of asymmetrical communication between users
through tags. The users of a collaborative tagging system are negotiating the meaning
of the terms in the folksonomy, whether purposefully or not, through their individual
choices of tags to describe resources for themselves. A well-known example for such
user behavior is the ESP game [vAD04], albeit in a slightly different context.

2.4.2 Weaknesses

Similarly to the discussion of their strengths in the previous section, several limitations
and challenges of collaborative tagging systems and folksonomies have been identified,
particularly when compared to more structured or formal schemes such as taxonomies
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or ontologies [Smi04, ZWY06, MNBD06, GH06, WZY06]. In the following paragraphs,
we summarize these findings.

Lack of semantics

The general structure of folksonomies is very simple as described in Section 2.2. This
simplicity is both a blessing and a curse – the curse being a lack of semantics that results
in problems such as polysemy, synonymy and variation of specificity [GH06, TT91,
ZWY06]. While users of a collaborative tagging system can easily associate tags to re-
sources, the type of these associations cannot be specified. The common (or intuitive)
understanding of a tag assignment (u, t, r) is that of “user u thinks that resource r is
about t”. However, the true reasoning behind the tag assignment is unknown. Simi-
larly, it is generally not possible to specify relations between tags. For this reason, some
systems such as BibSonomy [HJSS06a] or TaggyBear (see Chapter 7) have extended the
basic definition of folksonomies for their specific problem domains.

To summarize, the ease of use and low entry barriers of collaborative tagging systems
and folksonomies come at the cost of a lack of semantics, the result of which could be
loosely described as a higher level of uncertainty when compared to more structured
approaches such as taxonomies or ontologies. Whether these drawbacks outweigh the
benefits must be decided on a case-by-case basis – “there is no free lunch”.

Ambiguity of tags

Since users are free to create and pick tags as they please in a collaborative tagging sys-
tem, it is more difficult to understand the true meaning of tags [Smi04, ZWY06, Sim08].
Firstly, there is the problem of polysemy. For example, it is not clear whether a tag t
corresponds to the same concept when it is used in two different posts – even when it
is assigned by the same user. The tag golf is polysemous and could be a reference to a
German automobile, a sport or a geographical position. Secondly, there is the problem
of synonymy. For example, the tags model and mannequin are equivalent in a fash-
ion context. Other examples of ambiguity are the use of different parts of speech (fun
versus funny), singular versus plural (tutorial versus tutorials), spelling differ-
ences (color versus colour) or simply spelling mistakes (biology versus bioolgy)
[Sim08].

The empirical study of Zhang et al. [ZWY06] on emergent semantics from folk-
sonomies analyzed to how many concepts a given tag maps on the social bookmarking
service Delicious. They identified ambiguous tags such as todo or .imported24 that
indeed appeared in more than one concept, i.e. their concept distributions (or equiva-
lently, their semantic representations) were different from less ambiguous tags such as
cooking.

24The tag .imported is a special tag on Delicious: When users import their existing bookmarks from
applications such as the Web browser Internet Explorer, the tag .imported is automatically added to
any of these bookmarks.
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Ambiguity of tags makes tasks such as resource retrieval in folksonomies more dif-
ficult than in ontologies, for example, and require proper solutions for disambiguation
[GH06]. For instance, Zhang et al. [ZWY06] propose to use a probabilistic generative
model to model the user’s tag annotation behavior and to automatically derive the
emergent semantics of the tags. Au Yeung, Gibbins and Shadbolt [AGS07] demonstrate
how different meanings of ambiguous tags can be discovered through an analysis of
the tripartite graph of folksonomies, a process they call mutual contextualization.

Syntax problems

While the previous paragraphs discussed structural problems of collaborative tagging
systems and folksonomies, there are also rather technical problems of collaborative
tagging systems in practice. A large number of systems allow users to annotate re-
sources by entering a space-separated list of tags. This means that users have to resort
to workarounds for specifying phrases of more than one word. For example, the use of
the underscore character “_” or hyphens is very popular on the social bookmarking sys-
tem Delicious for writing phrases such as new_york_times or science-fiction.

2.4.3 User Motivation and Functions of Tags

Why do users tag resources on the Web? And how do they decide which tags to use?
Next to the discussions of strengths and weaknesses in the previous sections, several
studies have analyzed the motivations and incentives of users to contribute to collab-
orative tagging systems and folksonomies [MNBD06, SLR+06, AN07], or studied the
functions of tags and the process of tag choice [GH06, SLR+06, RW08a, Kip08, BH09].

User Motivation

In 1998 – before the advent of tagging and the Social Web – Abrams et al. analyzed why
people use bookmarks, based on a survey of 450 users [ABC98]:

“Bookmarks serve as convenient shortcuts to frequently used Web pages as
well as historical pointers to useful information that may otherwise be for-
gotten. [...] They are created and stored for archival purposes, and often not
visited for months. Users must weigh the costs of organizing bookmarks
against the expected gains. Thus bookmarking takes place within the con-
text of the users’ ongoing information requirements and their assessment of
how important current bookmarks will be to them in the future.”

Already more than ten years ago, Abrams et al. identified some of the user incentives
that are also observed for tagging folksonomies (see below): archiving and organiza-
tion of information. However, since information stored in bookmarks were not con-
veniently shared with other users at that time, the social dimension of folksonomies is
obviously missing. Anecdotally, one participant of the survey of Abrams et al. seemed
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to foreshadow the later developments of the Social Web – storing and sharing book-
mark information online – by responding, “I cannot reference a single bookmark file
across multiple platforms. I need NFS-like networkable bookmarks” [ABC98].

An early study of user incentives in folksonomies is the study by Marlow et al.
[MNBD06], who identified six main incentives. Unfortunately, detailed information
about how these incentives were identified and verified are not provided. Ames and
Naaman [AN07] analyzed the motivations for tagging on the photo sharing service
Flickr. Their qualitative study is based on in-depth, semi-structured interviews with 13
participants. The participants ranged in age from 25 to 45.

Ames and Naaman identified four main incentives of tagging as listed below. We
only describe these four motivations because, firstly, they cover the six incentives de-
scribed in the previous study by Marlow et al., and secondly, the experimental setup of
Ames and Naaman is more transparent.

• Self/Organization - Search and Retrieval: Tags are used for indexing and cate-
gorizing a resource so that the latter can be found again in the future by the user
himself.

• Self/Communication - Memory and Context: Tags are used to provide metadata
about a resource. This includes contextual information that cannot be directly de-
rived from the resource itself (e.g. location where a photo was taken), particularly
such information that the user himself might forget over time.

• Social/Organization - Public Search and Resource Pools: Tags are used to ex-
pose the resource – and the user himself – to the community. Here, a user tags a
resource for future retrieval and organization by users other than himself, i.e. he
is contributing to and sharing with the community. While seemingly altruistic,
there are also personal motivations involved in this sharing process such as self-
promotion, i.e. attracting attention from the community and gaining reputation.

• Social/Communication - Context and Signaling: Tags are used to communi-
cate contextual information to others about the image and the user himself, in-
cluding opinion expression and value judgement such as funny or scary (cf.
[MNBD06]). Ames and Naaman report that in most cases, participants of their
study added these contextual tags for the benefit of known others, such as friends
or family.

Ames and Naaman suggest that most participants of their survey were motivated
to tag by organization for the general public, i.e. Social/Organization, including the as-
pect of self-promotion. Self/Organization and Social/Communication were tied for second
place. On the other hand, they found that there were often multiple motivations in-
volved even in the use of a specific tag for a specific photo. Generally, most of the
participants of their study had one or two primary motivations for tagging as listed
above.
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Functions of Tags

In this section, we focus our description on the functions of tags in collaborative tagging
systems where the type of resourcesR is Web documents. Studies of collaborative tag-
ging systems involving other types of resources – for example, photos on Flickr – have
observed slightly different tagging behavior. In other words, tagging activity may vary
depending on the application context and system design [HHLS05] (cf. Section 2.1.3).
The interested reader may refer to the work of Bischoff et al. [BFNP08] for an analysis
and comparison of collaborative tagging systems with different types of resources.

In their early study of the social bookmarking service Delicious, Golder and Huber-
man [GH06] argue that users’ tag choices are not random. They analyzed the tags that
were used to describe these Web documents, and identified the following seven tag
categories:

• Topic or subject of the resource: Identifying what or who a resource is about (cf.
Section 2.3.1 on Subject Indexing).

• Type or nature of the resource25: Identifying what kind of thing the resource is
(e.g. a resource could be an article or a book).

• Category refinement: Refinements of categories, i.e. adding more specific tags
(e.g. cat) in order to refine broader tags (e.g. animals) applied to the same
resource.

• Ownership of the resource: Identifying who owns the resource.

• Subjective opinions of the user about the resource: Identifying qualities or char-
acteristics (e.g. scary, funny, or stupid).

• Self-reference: Identifying content in terms of its relation to the individual user
(e.g. tags with the prefix my such as mycomments or mystuff).

• Task organization of the user: Labeling resources for later processing or as refer-
ences to pending tasks (e.g. toread or jobsearch).

Xu et al. [XFMS06] report a similar categorization of tags in their study of the so-
cial bookmarking service Yahoo! MyWeb 2.026, and in which they also propose several
criteria for “good” tags. They describe five tag categories: (1) content-based tags; (2)

25The study of Golder and Huberman analyzed the folksonomy of Delicious, where resources are always
bookmarks of URLs, i.e. references to Web documents. While not explicitly mentioned, the “type” of
a resource they describe is not referring to the fact that resources are URLs but which content (type) is
depicted on the corresponding Web documents. In other words, the type of a URL such as the news
story of the New York Times about US president Barack Obama receiving the Nobel Peace Prize, avail-
able at http://www.nytimes.com/2009/10/10/world/10nobel.html, could be described as
article.

26Yahoo! MyWeb 2.0 was formerly available at http://myweb2.search.yahoo.com. However, Ya-
hoo! discontinued the MyWeb service on March 18, 2008 and moved all users to Yahoo! Bookmarks,
which is available at http://bookmarks.yahoo.com/, last retrieved on March 01, 2010.
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context-based tags; (3) attribute tags; (4) subjective tags; and (5) organizational tags. These
categories can be interpreted as a generalization of the categorization by Golder and
Huberman.

On the opposite end, Bischoff et al. [BFNP08] further refine the seven categories of
Golder and Huberman by introducing the dimensions time and location. They also de-
scribe a mapping between the various categorizations, which is shown in Table 2.1.

No. Bischoff et al. [BFNP08] Golder & Huberman [GH06] Xu et al. [XFMS06]
1 Topic What or who it is about Content-based
2 Time replaced Refining categories Context-based3 Location
4 Type What it is Attribute5 Author/Owner Who owns it
6 Opinions/Qualities Qualities & Characteristics Subjective
7 Usage context Task organization Organizational8 Self-reference Self-reference

Table 2.1: Mapping between tag classification schemes, based on [BFNP08].

An interesting observation regarding subjective tags, i.e. expression of the users’
personal opinions, was described by Paolillo and Penumarthy [PP07]. They analyzed
the tagging of Internet videos on Delicious27 and found that the overwhelming majority
of tags with subjective value judgements had positive evaluations. In their data, only
about 5% of tags had negative connotations (e.g. stupid). Among the positive ones,
nearly 70% were associated with humor (e.g. funny or humor). The rest expressed
approval in some form (e.g. cool or amazing). This evidence supports the observation
of Abrams et al. that users strongly prefer to add useful resources to their collections
[ABC98].

Community Influence on Individual Users

Most tagging systems support the user in the tag selection process by providing tag
suggestions, or recommendations, for a resource r ∈ R. Generally, these suggestions
are based on an analysis of the community’s tagging behavior, i.e. data derived from
the folksonomy F restricted to r. The majority of theories and mathematical models of
tagging found in the literature assume that such tag suggestions influence the individ-
ual user’s tag selection process. For the same reason, it is assumed that the emergence
of power laws in folksonomies (see Section 2.4.4) is mainly driven by the imitation be-
havior of users when observing tag suggestions provided by the user interface of the
tagging system.

In their study of the movie recommendation service MovieLens28, Sen et al. [SLR+06]

27Since video content can be embedded in Web documents, it is possible to indirectly annotate Internet
videos on Delicious by tagging (the bookmark of) the corresponding Web document.

28MovieLens is run by GroupLens Research, which is part of the Department of Computer Science and
Engineering at the University of Minnesota, USA; http://www.movielens.org, last retrieved on
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examined factors that influence both the way people choose tags, and ultimately, the
degree to which community members share a vocabulary. For this, they analyzed three
factors that are likely to influence how users apply tags: (1) personal tendency, i.e. to
apply tags based on a user’s past tagging behavior derived from his personomy Pu

29;
(2) community influence, i.e. the effect of the tagging behavior of other users derived
from the full folksonomy F ; and (3) the tag selection algorithm of the collaborative tag-
ging system that chooses which tags to display on its user interface. They found that
recommending tags from the community to the individual user via the user interface
does indeed influence his tagging behavior, and leads particularly to an increased use
of factual tags. Their results also indicate that the user interface has some effect on tag
convergence within the folksonomy (see Section 2.4.4).

Similarly, Dellschaft and Staab [DS08] advocate the hypothesis that both the back-
ground knowledge of a given user and his imitation of other users are needed for explain-
ing and understanding the tagging behavior of users. They integrate both aspects into
a dynamic generative model of folksonomies that better approximates behavior found
in actual tagging systems than previous models that focused on either aspect. Their ex-
periments suggest that the imitation rate during tag assignment is in the range of 60%
and 90%, meaning that imitation of other users is indeed more prevalent than a user’s
personal characteristics.

However, other studies came to different results. Rader and Wash [RW08a] mod-
eled five tag choice strategies for users on Delicious and analyzed whether their sim-
ulation results fit to real-world data: One model was based on Zipf’s law30, another
model simulated the strategy Self/Organization (see Section 2.4.3) based on an individ-
ual user’s past tag choices (i.e. his personomy Pu), and the remaining three models
were imitation-based variants. In their experiments, they could rule out any of these
strategies with the exception of the personomy-based organizing model. Their results
indicate that a user’s past tag choices had a large influence on future tag choices, while
the fact that a tag had been used before on a resource by other users (i.e. imitational
behavior) had little influence. In other words, the effect of the community on the indi-
vidual were smaller than previously reported, and tag selection – at least on Delicious
– might rather be governed by individual, idiosyncratic processes. It has to be noted
though that the study of Rader and Wash is based on a rather small experimental data
set that consists of the tagging histories of just thirty Web documents, and as such might
not be representative for the full Delicious folksonomy.

March 01, 2010.
29Additionally, new users – i.e. users with empty or very small personomies – have an initial tendency

based on their experiences with other tagging systems. Other aspects are their comfort with technology,
or their interests and knowledge [GH06]. The personal tendency thus evolves as people interact with the
tagging system.

30Zipf’s Law [Zip49, New06] is an empirical law that refers to the fact that many types of data in the
real-world, e.g. terms in natural language corpora or population distributions, can be approximated
with a Zipfian (power-law) distribution. In a Zipfian distribution, the frequency of an item or event is
inversely proportional to its frequency rank, i.e. the most frequent item will occur approximately twice
as often as the second most frequent item, which occurs twice as often as the fourth most frequent item,
etc.
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Figure 2.4: Example of a power-law graph. To the left are the large values that domi-
nate the graph, to the right is the long tail. Picture by Hay Kranen.

To further complicate the quest for truth, Bollen and Halpin present experimen-
tal results that show that power-law distributions in folksonomies form regardless of
whether or not tag suggestions are presented to users [BH09]. They argue that this also
clarifies how power-law distributions were observed in studies such as [GH06, CLP07]
even before tagging systems integrated tag suggestions into their user interfaces.

We can conclude this section by summarizing that the referenced studies show the
direction of research in this area, and that tags are clearly not limited to indicating the
topic of a document as in traditional subject indexing. Still, the influences on users’ tag
choices are not fully understood yet. As Abrams et al. already noted in 1998, “given
the ever increasing importance of the Web and its role as general repository of infor-
mation, understanding the bookmarking process and developing appropriate tools for
organizing large numbers of bookmarks are likely to become pressing issues” [ABC98].

2.4.4 Dynamics and Usage Patterns

In this section, we report recent findings on the dynamics of folksonomies, i.e. user
behavior and the patterns that derive from it.

Power-Law Behavior, Scale-Free Networks and Preferential Attachment

Power-law distributions appear in many real-world contexts such as the distributions
of city populations, the number of academic citations, telephone calls, frequency of
family names, or BGP routing topologies in the Internet [BA99, New06, MC08]. Well-
known examples of power-law functions are the Pareto principle, also known as the
“80-20 rule”, and Zipf’s law [Zip49, Ree01, New06]. In the area of the Web, for example,
Adar et al. observed power-law behavior for Web revisitation patterns, i.e. user pat-
terns for (re-)visiting Web pages [ATD08]. Power-law distributions have highly skewed
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populations with “long tails”, i.e. a limited number of large values appear several or-
ders of magnitude beyond the much-smaller median value. More precisely, a quantity
x obeys a power law if it is drawn from a probability distribution [CSN09]:

PDF : p(x) ∝ x−α
�� ��2.1

where α is a positive constant of the distribution known as the exponent or scaling
parameter with α > 1. In practice, few empirical phenomena obey power laws for all
values of x. More often, the power law applies only for values greater than some mini-
mum xmin. In such cases, one says that the tail of the distribution follows a power law.
An example of a power-law graph is shown in Figure 2.4.

Closely related to power laws in the context of folksonomies are the notions of scale-
free networks and preferential attachment [BA99, BAJ00]. A scale-free network is a network
(or graph) whose degree distribution follows a power law, at least asymptotically. In
other words, the fraction P(k) of nodes v ∈ V in the network having k connections to
other nodes goes for large values of k as P(k) ∼ k−α, where the scaling parameter α
is typically in the range 2 < α < 3 [CSN09]. As we have described in Section 2.2, a
folksonomy can be seen as a tripartite hypergraph G = (V, E), in which the node set V
is partitioned into three disjoint sets of users U , tags T , and resourcesR.

Preferential attachment is the phenomenon of “the rich get richer”, which thus affects
the growth of a network. Due to the preferential attachment, a vertex v1 that acquired
more connections than another vertex v2 will increase its connectivity at a higher rate,
thus an initial difference in the connectivity between two vertices will increase further
as the network grows (i.e. degree(v1) � degree(v2) over time) [BA99]. Preferential
attachment can, under suitable circumstances, generate power-law distributions such
as those observed in scale-free networks.

Several studies have observed power-law behavior and preferential attachment in
folksonomies [HJSS06c, CLP07, HRS07, WZB08, SNRI08, LGZ08, DS08, HKGM08]. Since
power laws are the standard signature of self-organization and human activity [Bar05,
New06], the presence of a power laws in folksonomies is not surprising.

Some of the power laws observed in folksonomies are:

• User activity: A small group of users U ∗ ⊂ U with |U ∗| � |U| account for most
of the activity, i.e. posts P(F ) in a folksonomy F .

• Resources usage: A small set of resources R∗ ⊂ R with |R∗| � |R| is the center
of attention for the activity P(F ) in a folksonomy.

• Tag usage: A small set of tags T ∗ ⊂ T with |T ∗| � |T | is used for most of the
posts in P(F ).

For example, Wetzker et al. [WZB08] report that the Top 1% of users on Delicious
account for about one quarter of all posts in the system, and the Top 10% contribute
about 60%. They note though that user activity did not completely follow a true power-
law distribution (see the “bent” curve of the left log-log plot in Figure 2.5), similar to the
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Figure 2. Some power law distributions found on del.icio.us.

Table 3. Top 10 most frequent domains in the corpus

domain bookmarks users
1. http://en.wikipedia.org 919, 465 205, 639
2. http://www.youtube.com 915, 789 186, 326
3. http://www.flickr.com 535, 176 162, 363
4. http://www.nytimes.com 503, 776 101, 375
5. http://www.google.com 392, 360 156, 990
6. http://lifehacker.com 368, 078 90, 628
7. http://www.amazon.com 341, 414 91, 073
8. http://news.bbc.co.uk 317, 978 75, 610
9. http://www.microsoft.com 290, 501 101, 947

10. http://community.livejournal.com 280, 020 29, 655

As reported by other authors [3, 4], we find the user activity to
follow a power law distribution with few users being responsible for
a high number of posts as shown in Figure 2(a). The Top 1% of users
proliferates 22% of all bookmarks, the Top 10% contribute 62%.
These values are above the values reported by [3]. We assume that
this difference is due to an increase in spam posts within the recent
months (see section 5). Another power law dependency can be found
for the occurrence frequencies of URLs where 39% of all bookmarks
link to the Top 1% of URLs and 61% to the Top 10% (Figure 2(b)).
Furthermore, we find that 80% of all URLs appear only once in the
corpus. The URL distribution seems less polluted by spam as users
can bookmark an URL only once.

The authors of [2] observe that the del.icio.us community pays at-
tention to new URLs only for a very short period of time. As a result,
these URLs receive most of their posts very quickly and disappear
shortly afterwards. Figure 3 shows the popularity of the most popu-
lar URLs in June 2006 that were unknown the month before. As can
be seen, each URL peaks within very few days before the number of
posts drastically decreases. According to [2], this burst in popularity
is likely to be caused by the appearance of an URL on the del.icio.us
main page triggered by external reasons, such as the appearance of
this URL on a widely read blog. Another cause of an initial popu-
larity increase could be the spread of interest within the network of
del.icio.us users itself.

We find each bookmark to be labeled with 3.16 tags on average.
However, the average number of tags assigned to bookmarks varies
significantly among users as shown in Figure 4. Moreover, about 7%
of all bookmarks are not tagged at all.

The tags assigned to a bookmark can perform different functions,
as described in [2]. The authors identify seven tagging purposes the
most relevants being the assignment of tags for describing the topic
and the type of bookmarked resources. Our analysis underlines these
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Figure 3. Popularity of 5 sample URLs as percentage of overall
bookmarks over time. Most upcoming URLs disappear after peaking.

findings as can be seen from Table 4 which lists the 20 most fre-
quent del.icio.us tags. The vocabulary of del.icio.us users seems to

Table 4. Top 20 most frequent tags in the corpus

tag count tag count
1. design 4, 936, 513 11. free 2, 501, 411
2. blog 4, 027, 524 12. web2.0 2, 428, 219
3. software 3, 955, 838 13. art 2, 303, 954
4. web 3, 272, 325 14. linux 2, 256, 768
5. tools 3, 234, 032 15. css 2, 218, 035
6. reference 3, 153, 890 16. howto 2, 173, 611
7. programming 3, 087, 505 17. tutorial 1, 980, 405
8. music 2, 990, 034 18. news 1, 963, 509
9. video 2, 603, 455 19. photography 1, 766, 759

10. webdesign 2, 548, 616 20. business 1, 718, 118

be highly standardized. Even so, there exist around 7 million tags in
our corpus only 700 account for 50% of all assignments. This con-
vergence is likely to be supported by the tag recommendation mech-
anisms provided by del.icio.us which suggests tags based on own or
other users previous labels. 55% of all tags were found to appear only
once in the data. Figure 2(c) demonstrates the tag distribution.

Tendencies in the del.icio.us tag distribution strongly correlate
with external events as shown in Figure 5 which presents the dynam-
ics of 5 sample tags in 2007. As can be seen from the the time series,

3

Figure 2.5: Power laws in folksonomies. Some power-law distributions found on De-
licious as reported by Wetzker et al. [WZB08]. The left, center, and right
graphs show user posts per month, posts per Web document, and tag oc-
curence, respectively. Li et al. observed similar patters in their study of
Delicious [LGZ08].

findings of [KJHS08]. However, Robert Wetzker remarked in a personal discussion31

that the x-range from 100 to 101 shown in Figure 2.5 might be biased due to their data
selection strategy for scraping experimental data from Delicious.

Wetzker et al. also observed power-law behavior for the occurrence frequencies of
Web documents, where the Top 1% of Web documents were referenced by about 40%
of all posts, and the Top 10% documents by 61%. On the opposite end, 80% of all Web
documents were posted only once in their experimental data set. Tag occurrence also
followed a power law, with the Top 1% of tags accounting for more than 50% of all
tag assignments. Their results shown in Figure 2.5 are similar to the observations of
Li et al. [LGZ08].

One implication of the power-law distributions of user activity and resource usage,
for example, is that discovering the common interests of users on resources in folk-
sonomies differs significantly from discovering the common interests of customers in
online shopping systems [LGZ08]. In a shopping system, it is reasonable to assume that
although each individual customer may have a small number of purchases, most items
should at least have a moderate number of purchases on them; otherwise these items
are non-profitable. In a folksonomy, however, the distributions of user activity and re-
source usage are both long-tailed: most resources are only posted once or twice, and
most users only post one or two resources. This makes the discovery of common user
interests with techniques such as clustering or traditional collaborative filtering more
difficult [LGZ08]. On the other hand, approaches such as hybrid probabilistic latent
semantic analysis (PLSA) by Said et al. [SWUH09] benefit from the characteristics of
folksonomies by exploiting the higher connectivity within the social graph caused by
tags32 for tackling problems such as the cold start of recommendation systems.

31Personal discussion in a VoIP conference between Robert Wetzker and Michael Noll, August 2009.
32For a small dataset, the number of user-resource co-occurrences is too low to allow a collaborative fil-

tering recommender to make satisfying predictions for recommending resources to users. Tags and
tag-resource co-occurrences, on the other hand, provide higher resource-resource similarities as tags
are more abundant and contain contextual information about the resources [WUS09, SWUH09].
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Halpin et al. [HRS07] also found power-law behavior for tag usage in their study of
Delicious. An interesting observation they report is a significant sharper drop in fre-
quency for Top tags at position seven to ten than the general trend line would predict.
They hypothesize that this effect may have a cognitive explanation (i.e. it may be based
on the number of tags the average user annotates a post with), or it may be an arti-
fact specific to the Delicious user interface (e.g. Delicious displays seven tags that are
popular in the community when a user opens the bookmarking dialogue window as of
2009). The second explanation has later been supported by the experimental results of
Dellschaft and Staab [DS08]. It is thus recommended to factor in the effects of a tagging
system’s user interface when evaluating scientific experiments about user behavior in
folksonomies.

The finding that tag distributions in particular tend to stabilize into power-law distri-
butions is very important. A stable tag distribution is an essential aspect of what might
be user “consensus” around the classification scheme of a folksonomy [HRS07]:

“Therefore, given sufficient active users, over time a stable distribution with
a limited number of stable tags and a much larger long tail of more id-
iosyncratic tags develops. One might consider this stabilized distribution
an emergent categorization scheme. This stable categorization scheme is
described by a scale-free power law, such that in the future, further tagging
will only reinforce the pre-existing categorization scheme given by the lim-
ited number of stable tags. One might claim that the users have collectively
discovered a collective categorization scheme [i.e. a folksonomy].”

We have a more detailed look at stabilization of folksonomies in the next section.

Stabilization of Folksonomies and User Consensus

Generally, a collaborative tagging system does not impose any restrictions on the tag-
ging activity of its users. Intuitively, one might think that this freedom would lead
to random or chaotic behavior and noisy data within the system. Under such circum-
stances it is difficult to imagine that any kind of categorization scheme with meaningful
information could emerge. However, in one of the earliest empirical studies of collab-
orative tagging, Golder and Huberman report that tagging data in fact stabilizes very
quickly over time [GH06]. They show that resources tagged in Delicious demonstrate
a stable tag distribution – usually after about 100 users have tagged the resource – that
follows a power-law pattern in which the same few tags are chosen by many users,
while most other tags are selected by only a few people.

Following the argumentation in [GH06, HRS07], these stable patterns can be inter-
preted as the emergence of a consensus among the community of users for which tags
best represent a given resource. Because of the power-law behavior found in folk-
sonomies (see the previous section), such a consensus is not likely to be changed over
time even though users may continually assign more tags to the resource. Halpin et al.
studied the trend of tag distribution convergence [HRS07]. They report that, for most
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Figure 2.6: Desire lines in landscapes. These lines are the foot-worn paths that some-
times appear in a landscape over time [Mer04]. Photo by Phil Gyford.

resources in their experimental data, tag distributions usually converge to a power-law
distribution within several months. Additionally, the study of Li et al. reveals that tag
convergence for resources is independent from the social popularity of the resource, i.e.
the total number of distinct tags assigned by users to a resource is (empirically) limited
no matter how popular the resource is within the community [LGZ08].

A recent study by Wetzker et al. [WZBA10] reveals more details with regard to the
stabilization patterns of folksonomies. They investigated the social bookmarking sys-
tems Delicious and Bibsonomy, and observed that resources indeed develop a charac-
teristic and stable tag distribution that is strongly dominated by very few tags. The
tagging vocabularies of users, on the other hand, react more dynamically due to shift-
ing user interests or tagging behavior. They also note that the tag distributions of users
(derived from their personomies Pu) do exhibit power-law characteristics, whereas the
tag distributions of resources (derived from the restriction ofF to r) even exceed power-
law behavior, i.e. the divergence between very frequent and very rare tags is even larger
for resources.

In this context, Merholz [Mer04] makes an analogy of folksonomies with desire lines.
These lines are the foot-worn paths that sometimes appear in a landscape over time as
shown in Figure 2.6. Emergent semantics of folksonomies are similar to desire lines:
They emerge from the actual use of tags and resources, directly reflect the user’s vo-
cabulary, and they can be used back immediately to serve the users who created them
[ZWY06].

One important question is why the reported “consensus” within folksonomies emerges
in the first place. In traditional subject indexing, such a consensus is called indexing con-
sistency. It refers to the extent of agreement among different indexers with regard to the
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terms that are used to index resources. It is found very difficult to achieve high levels
of consistency in practice: Hooper [Hoo65] reports a wide range for consistencies in
real-world scenarios, ranging from 10% (low) to 80% (high)33. While stabilization and
convergence of tag distributions in folksonomies are related to indexing consistency,
they are not equivalent. Given the power-law behavior of folksonomies, one must ex-
pect that the total consensus for tag selections among users must be very low due to
the negative impact of the long tail, where most tags are chosen by only one or two
users (cf. the right side of Figure 2.4 and the right graph in Figure 2.5). And indeed,
we observed such a low global consensus in our own studies as described in Chapter 4,
where we investigate the diversity of data in folksonomies. On the other hand, how-
ever, the power-law behavior of tag distributions also implicates that a large number of
users agree on a small set of tags (cf. left side of Figure 2.4). This means that users col-
lectively arrive at a consensus on which tags are the most important to describe a given
resource. When we talk about emergent consensus in folksonomies with regard to tags,
we are thus mainly referring to those tags that have managed to “escape” the long tail
of tag distributions for both users and resources, i.e. cumulative effects dominate over
local heterogeneities.

Golder and Huberman suggest two possible reasons for the emergence of consen-
sus in folksonomies [GH06]: Firstly, because of imitation of the tagging behavior of
other users, and secondly, because of shared knowledge within the user community. And
indeed, imitation-based behavior models have been shown to simulate user behav-
ior quite effectively as described in Section 2.4.3. On the other hand, studies such as
[MNBD06, WZBA10] indicate that shared knowledge is also playing an important role
in this process. For example, Marlow et al. [MNBD06] show that the overlap of tagging
vocabularies is higher with a user’s contacts (users in his network) than with random
users. They argue that this could be caused by shared knowledge such as dialect, soci-
olect, ethnolect, ecolect and idiolect [MNBD06]. Still, the final answer to the question
of why a consensus emerges has yet to be found.

While the effects of power-law patterns in folksonomies appear to be primarily ad-
vantageous, there is also a potentially negative aspect in this context. As Moore et al.
state in [MC08] in their study of the collaborative anti-phishing service PhishTank34,
the intuitive argument put forth in favor of the robustness of “crowd-sourced” applica-
tions such as collaborative tagging systems is that the opinions of many users outweigh
the occasional statistical outlier, or even the views of a malicious user. If the activity in
a system follows a power-law distribution, however, it also means that a single highly
active user can greatly impact the system’s overall accuracy. Moore et al. continue by
concluding that this is why a power-law distribution invalidates the standard Byzan-
tine fault tolerance35 view of reliability [LSP82], because the subversion of even a single

33Hooper [Hoo65] measured the consistency of a pair of indexers via the formula CP = |TM∩TN |
|TM∪TN | , where

CP is the consistency (expressed as a percentage) of term agreements between the two indexers M and
N, and TM and TN are the sets of terms used by indexer M and N, respectively.

34PhishTank, http://www.phishtank.com/, last retrieved on March 01, 2010.
35The Byzantine fault tolerance is a generalized version of the Two Generals’ Problem. In a multi-component

system, the goal of Byzantine fault tolerance is to defend against a Byzantine failure, i.e. a component
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highly active participant could undermine the system. As we will see in Section 2.6,
popular collaborative tagging systems suffer from spamming activity. One common
spam strategy is to flood the system with large amounts of junk information, resulting
in the spammers becoming part of the highly active user group in the system. For ex-
ample, Wetzker et al. [WZB08] found that 19 of the Top 20 most active Delicious users
in their experimental data set were spammers who posted ten thousands of Web docu-
ments pointing to only few Web domains. In total, these 19 spammers alone accounted
for 1.3 million bookmarks or around 1% of their data corpus. For this very reason, we
propose the SPEAR algorithm in Chapter 5 in order to favor quality over quantity of user
activity in folksonomies, and thus harden a folksonomy against “faulty” or “malicious”
users.

2.5 Folksonomies and Recommender Systems

Like tagging systems, collaborative filtering [HKTR04] is concerned with the relation-
ships between users and resources (U ×R), and the extent to which these connections
can be leveraged for tasks such as supporting users in finding new resources or users
with similar interests. Collaborative filtering tries to find solutions to problems such as
“Find books related to the book I’m buying” and “Recommend movies I might want to
watch”. It is typically used in domains such as online shopping systems (support cus-
tomers in buying items based on purchase histories) or social networks (support people
in finding other people).

An important requirement for collaborative filtering is an adequate understanding of
the interests and preferences of users. The process which models these user preferences
is called user profiling, and the effectiveness of a collaborative filtering system heav-
ily depends on its accuracy. User profiles can be built from implicit and explicit user
feedback on resources and other users. For example, the purchase of the movie “The
Godfather” by a user on Amazon.com can be considered as implicit, positive feedback
on both the quality of the movie and the interests of the user in its genre or topic. Rating
the same movie on Amazon.com with five out of five stars represents a direct expres-
sion of user opinion and is thus an example of explicit user feedback.

Collaborative tagging systems can also be considered as a form of collaborative fil-
tering [MNBD06] in which the act of tagging a resource by a user represents explicit
user feedback on the resource, with tags serving as the voting element. Since tagging
resources is a very subjective user task (cf. Section 2.4.3), the data in a folksonomy
provides a lot of information for understanding the interests and preferences of users.
An encouraging observation for leveraging folksonomies for Web information retrieval
is reported by Al-Khalifa and Davis [AKD07]. They show that tags of a folksonomy

that does not only behave erroneously but also fails to behave consistently when interacting with other
components of the system. A Byzantine fault tolerant system is able to function correctly in spite of
faulty components as long as the number of faulty components does not exceed a certain threshold
(also called its resilience). It can be shown that if n is the total number of components, and t < n is the
number of faulty components in that n, then there are solutions to the problem only when n ≥ 3t + 1.
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for resources agree more closely with human-generated keywords than those automat-
ically generated. They also report that trained human indexers preferred the semantics
of tags compared to machine-generated keywords in their study. Similarly, Li et al.
[LGZ08] found that tags are in general better than term weighting schemes such as TF-
IDF in representing a human being’s judgements about Web content. Therefore, tags
are good candidates for profiling tasks, particularly since they serve a dual purpose as
they allow for a profiling of both users (interests in topics) and resources (topics).

Several studies in the literature have exploited folksonomies for recommendation of
resources. Niwa et al. [NDH06] propose an approach for Web resource recommenda-
tion by leveraging folksonomy information from the social bookmarking service Deli-
cious. User interests are modeled by associating each user with a tag cluster, and Web
resources are subsequently recommended based on their relatedness to these clusters.
Soyanovich et al. [SYMY08] model a user’s interests based on his tagging vocabulary
as well as his explicitly stated and implicitly derived social ties within a folksonomy.
They demonstrate how such the resulting user profiles can be leveraged to create so-
called “hotlists” of resources that are recommended to individual users. Wetzer et al.
[WUS09] propose a hybrid approach that recommends resources based on the user-
resource distribution (as in collaborative filtering) combined with the tagging informa-
tion of resources. In a follow-up work by Said et al. [SWUH09], the authors note that
the inclusion of tagging information is especially helpful for mitigating the cold start
phase of newly created tagging systems. At this point in time, the user-resource distri-
bution by itself is normally quite sparse, and tags help to achieve a higher connectivity
between users and resources.

In Chapter 6, we will describe our studies on leveraging folksonomy information for
constructing user and resource profiles in order to personalize Web search.

2.6 Folksonomies and Spam

The convenience of collaborative tagging systems has attracted an increasing number
of users over the recent years. However, the rising popularity of these systems has also
encouraged malicious individuals to abuse these systems for their own benefits. Nowa-
days, spam has already become a significant problem for collaborative tagging systems
in practice. While there exists a variety of definitions of spam depending on the spe-
cific context, a common notion of spam is that of “unsolicited bulk messages”. It refers
to the practice of sending unwanted messages and information – frequently with com-
mercial content – in large quantities to an indiscriminate set of recipients. Long before
collaborative tagging became popular, spam was already a problem in other domains
such as fax transmission, email messaging [AKCS00, Hid02, Cor07] and Web search
[DWV99, GGMP04, GGM05, BCSU05, AS08]. Back in 2006, Hotho et al. [HJSS06c] still
stated, “spam is [currently] not a serious problem for social bookmarking systems”, but
they already anticipated the advent of spam in collaborative tagging systems. On the
popular social bookmarking service Delicious, for example, most of the highly active
users have been found to be spammers [WZB08]. While some features and techniques
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that were developed for fighting spam in domains such as email and Web spam, e.g.
content-based or link-based spam detection [WD05, NNMF06, CDG+07, GS07], can be
transferred to collaborative tagging systems, most of these countermeasures do not di-
rectly apply to these systems [HKGM07], or at least may be improved upon. This can
be achieved, for instance, by integrating additional, domain-specific features such as
user activity profiles or an analysis of the co-occurence of tags and resources [KSHS08].

The general objective of spammers is to bring their content to the attention of legiti-
mate users. However, their means of doing so depends on the characteristics of the tar-
get environment. In collaborative tagging systems, for example, spammers [KEG+07,
KFG+07, KSHS08, WZB08] may register multiple user accounts that they abuse for col-
lectively posting the same resource multiple times. Such a strategy is quite effective
on tagging systems that rely on a quantitative measure like the number of posts of a
resource to derive its popularity within the community. Another strategy of spammers
is to assign popular tags indiscriminately to their own resources, so that these resources
are more likely to be displayed to users when they navigate or browse the folksonomy
by tag. This type of spam pollutes the folksonomy by creating artificial links between
resources and tags that would otherwise be unrelated. It thus affects the measures
of tag and resource similarity that are grounded in tags, and thereby has impacts on
recommendation, ranking and search [MCM09a, NO09]. For instance, a spammer in
Delicious could attach the tags apple and iphone to a Web site that in fact sells the vi-
agra drug in order to trick unaware users into visiting that resource because they expect
information about Apple’s mobile phone. A third strategy of spammers is to mimic le-
gitimate user behavior in order to gain reputation within the community by re-posting
content that is already known to be popular within the folksonomy, and then abuse this
reputation to promote their own content.

The attack vector of the first strategy is to intentionally increase the post count of a
resource r, i.e. it increases the set of posts Pr(F )36 by increasing the number of distinct
users ui of a resource through multiple tag assignments (ui, t, r), whereas the attack
vector of the second strategy mislabels r by manipulating the tags ti in tag assignments
(u, ti, r). The attack vector of the third strategy depends on the way a tagging system
calculates a user’s “reputation” within the community, and how much information is
available to spammers about this process in order to game the system. For example,
a spammer could construct the set of popular resources Rpop ⊂ R within F and start
from there37. Of course, such strategies can be combined for increased effect.

Studies such as [CSB+07, KEG+07, KFG+07, HKGM07] are the first to deal with spam
in tagging systems explicitly. Heymann et al. [HKGM07] discuss the spam problem on
social Web sites, while putting a focus on collaborative tagging systems. They differen-
tiate three main approaches to tackle spam: prevention, detection and demotion.

Prevention-based approaches operate a priori. They try to stop spamming activity
before it actually happens. For example, such approaches can be integrated into the

36Pr(F ) refers to the restriction of the total set of posts P(F ) to r within the folksonomy F .
37What helps spammers in this context is that information about Rpop is normally readily available: Most

tagging systems in practice are leveraging such popular resources themselves in order to attract more
users and thus display those resources prominently on their Web sites.
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Figure 2.7: An example of a CAPTCHA. Here, it is put in place to protect Google
accounts.

user registration process in order to prevent spammers from creating user accounts in
the tagging system. A popular technique is the use of CAPTCHA [vABHL03, vABL04],
a reverse turing test that presents challenges to users that are easy to solve by humans
but difficult to solve by machines (see Figure 2.7). Such computationally expensive
barriers hamper the ability of spammers to automate user activity, thereby reducing
the scale of spam.

Detection-based approaches, on the other hand, operate a posteriori. They include
techniques such as analyzing tagging behavior within a system in order to detect ma-
licious user activity. Cattuto et al. [CSB+07], for example, observe that tagging be-
havior creates characteristic power-law distributions (see Section 2.4.4), with major
derivations from these patterns caused by spam entries. Similarly, Neubauer and Ober-
mayer [NO09] propose a spam detection approach that constructs hyperincident net-
works from folksonomies. In these networks, vertices represent the hyperedges of
the folksonomy graph (see Section 2.2). They report that the connected components
of these networks show structural differences for spammed and spam-free networks,
with the respective “gap” depending on the extent of spammer activity. Neubauer
and Obermayer argue that spammers do not merely post different resources with dif-
ferent tags, but they behave differently from legitimate users in such a fundamental
way that it structurally changes the resulting networks. This argument is supported
by Markines et al. [MCM09a] who report that legitimate users share a prevalent vo-
cabulary to annotate resources [XFMS06], whereas spammers often use tags and tag
combinations that are statistically unlikely to appear in legitimate posts.

Demotion-based approaches operate a posteriori as well. They try to reduce the im-
pact of spamming activity by assigning lower ranks to malicious users (and their sub-
sequent activities) compared to regular users, thereby hindering spammers from bring-
ing their content to the attention of regular users. Such techniques are often used in the
context of ranking users, tags, or resources. Typical examples are the cleaning of search
results, navigational overviews or browsing features that rely on a list-type display.
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For example, Koutrika et al. [KEG+07] propose an approach based on the reliability of
a user’s tag assignments (u, t, r). They estimate this reliability by measuring how often
a user’s posts coincide with other users’ postings. This measure is then used to de-
mote malicious users who purposely assign unrelated tags to resources (see discussion
above).

We can conclude that a thorough understanding of spamming activities and finding
proper countermeasures are important challenges for folksonomies and collaborative
tagging. A direct consequence of spam is that a vulnerable tagging system will see its
quality and value for legitimate users deteriorate. As an indirect consequence, research
on collaborative tagging must bear in mind that experimental data might be polluted
by spam, which can impact the correctness of experimental results and their interpre-
tations. Any of the anti-spam approaches described above comes with its own benefits
and drawbacks. Firstly, prevention-based approaches can lead to collateral damage by
putting off both spammers and legitimate users because they increase the burden for
both groups. Secondly, detection-based approaches often require large sets of tagging
data in order to operate effectively. On the one hand, this requirement can limit their
value for small to medium-sized tagging systems, and on the other hand, it increases
the technical difficulty to use these approaches in a practical setting where time and
computational resources are restricted. Lastly, demotion-based approaches are vulner-
able to focused spammer attacks. It is thus likely that a hybrid approach will prove to
be the most effective and efficient in both theory and practice.

2.7 Ranking in Folksonomies

The science of Web information retrieval is primarily concerned with searching and
finding relevant and high quality resources of information on the Web. Here, an impor-
tant task is to rank resources in order to present the “best” resources to users first. In the
context of Web search, the most prominent example of ranking is search results, where
resources are ranked by relevance in descending order [Kle98, BP98].

Folksonomies are no exception in this context, as indicated by research such as the
study of Chi and Mytkowicz [CM08]. The latter analyzed the efficiency of collaborative
tagging systems with information theory. One of their observations is that the num-
ber of documents assigned with a specific tag keeps increasing – particularly for highly
popular tags (cf. Section 2.4.4) – which means that navigating a folksonomy or finding
resources through tags will become increasingly difficult for users over time. A possible
solution to this problem is the use of ranking techniques. In traditional Web informa-
tion retrieval, ranking is based on the bipartite structure of the Web graph and is thus
applied only to resources R. In the tripartite structure of folksonomies, however, it is
often desirable to rank users U and tags T in addition to resourcesR.

Several algorithms for ranking in folksonomies have been proposed in recent years.
The topic-sensitive FolkRank algorithm by Hotho et al. [HJSS06c] is an adaptation of
the PageRank algorithm by Brin and Page [HJSS06c], and ranks the three entities of a
folksonomy – users, tags, resources – at the same time. The algorithm is a topic-specific
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ranking method that can make use of a user preference vector to allow for personalized
ranking. John and Seligman propose ExpertRank [JS06] for ranking users by their exper-
tise in a particular topic represented by a tag. They describe two implementations of
ExpertRank: The first variant relies solely on a user’s number of posts assigned with a
specific tag to determine his expertise, the second variant additionally integrates a tag-
occurence analysis to account for dependencies between tags. A user’s expertise level
as returned by ExpertRank is therefore primarily determined by his own actions and
only to a lesser extent by the behavior or opinions of other users. Bao et al. [BXW+07]
propose the SocialPageRank, which measures the popularity of Web resources from the
perspective of Web users through a mutual reinforcement scheme of the levels of pop-
ularity between the tree entities of a folksonomy. Similarly, Abel et al. propose Social-
HITS [ABB+09], which is an adaptation of the HITS algorithm [Kle98] to the tripartite
structure of folksonomies.

The common assumption of all these algorithms is that a resource which is tagged
with popular tags by active users becomes popular itself (with similar notions for users
and tags), in other words a mutual reinforcement of importance. However, as we have
described in Section 2.6, the notions of the popularity and activeness are susceptible to
spamming activities, which makes them in practice not as reliable as they might seem
on first glance. This means that rankings produced by algorithms as those described
above may be biased due to putting too much emphasis on the quantity of activities in
a folksonomy. In Chapter 5, we will further elaborate on the relations of ranking and
spamming in folksonomies and also propose a new approach for ranking users and
resources in folksonomies.

2.8 Summary

In this chapter, we have provided a review of collaborative tagging and folksonomies.
We have put folksonomies into context with related concepts, and presented the current
state of research in areas such as user motivations, dynamics, and the impact of spam
on folksonomies in practice.

The advent of collaborative tagging and folksonomies provides ample opportunities
for research in a wide range of fields. Given the prior research we have discussed in
this chapter, the current challenge for scientists is two-fold. Firstly, it is important to
improve our understanding of the nature of folksonomies. Secondly, we need to find
out how the richness of information and the hidden semantics contained in these user-
driven systems can be exploited to create and improve techniques and methodologies
in research domains such as Web information retrieval.

In the following chapters, we will describe our contributions to a better understand-
ing of folksonomies and how we leverage this knowledge for enhancing and improving
techniques in the domain of Web information retrieval. We will start these discussions
in the next chapter with an overview of the experimental data sources and experimental
data sets that we have created and used for these studies.
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Measure what is measurable,
and make measurable what is
not so.

Galileo Galilei (1564–1642) 3
Experimental Data

An essential prerequisite for most scientific studies in our research domain is the com-
pilation of appropriate experimental data sets. For the research work described in this
thesis, we need access to large volumes of real-world data that is sufficiently general
and representative of a broad range of domains to allow for generalization of experi-
mental results and any derived conclusions. Additionally, this data must support us in
measuring and quantifying qualitative aspects where appropriate and necessary. Our
studies and analyses leverage various sources for building such experimental data sets,
of which the most important source is the collaborative tagging system Delicious.

In this chapter, we present the major data sources used in this thesis and discuss
why they are suitable targets for our research. Additionally, we describe the technical
tools that we have created and used to collect data from these sources. We also give
an overall description of the main experimental data sets that we have subsequently
constructed and that will be used in our studies presented in the later chapters.

3.1 Main Data Sources

3.1.1 Delicious

The social bookmarking service Delicious1 is one of the most popular tagging systems
in the Internet and the main source of experimental data for the work described in this
thesis. For this reason, we provide a more detailed view of Delicious in this section. We
have already described in Section 2.2 that bookmarks in Delicious can be adequately
modeled by our definition of posts in folksonomies. As such, we will use the term social
bookmark, or simply bookmark, interchangeably with “post” for the remainder of this
thesis2.

In a nutshell, Delicious allows users to manage, organize and share references to Web
resources – commonly known as “bookmarks” – including related metadata3. By refer-
encing its URL, a user can create and save a bookmark of a Web resource to Delicious,

1Delicious, http://delicious.com/, a Yahoo! company.
2Another reason is that prior research studies often uses the term social bookmark as well, thereby making

it more convenient for the reader of this thesis to perform comparisons across works.
3Based on the self-description of Delicious as stated on its About page at http://delicious.com/
about, last retrieved on March 01, 2010.
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Figure 3.1: Delicious user interface (UI) - Posting a new bookmark. The UI includes
features such as presenting the user with a list of tag suggestions (“Recom-
mended” and “Popular” tags) and marking the bookmark as private, i.e.
only viewable by the user himself. In this example, tag suggestions for the
homepage of the Hasso Plattner Institute include research, germany and
science.

and by doing so, add the resource to his personal collection (see Figure 3.1)4. He may
optionally store additional metadata about the resource in the bookmark such as a title
and tags, with the latter metadata representing the act of tagging the resource. This
also means that users may create bookmarks that do not contain any tagging data. For
completeness, we therefore differentiate between bookmarked (at least one bookmark)
and tagged (at least one bookmark with tags) Web resources in the analyses of our ex-
perimental data sets presented in the later chapters.

Users can create bookmarks through the Delicious Web site, Web browser plugins,
mobile phones or other third-party applications and online services, i.e. basically from
anywhere on the Web. The social aspect of bookmarking on Delicious is similar to the
general case of collaborative tagging: All bookmarks on Delicious are publicly view-
able by default, i.e. shared with the community, although users can mark specific book-
marks as private. Since resources are identified by URLs, virtually any Web resource
with a valid URL – Web pages (aka Web documents), images, videos, etc. – can be
posted to Delicious. We have chosen to use the folksonomy of Delicious for our studies
due to four major reasons: size and popularity, diversity of information, data granu-
larity, and interfaces. A comparison of the dimensions of Delicious with the “offline
world” is illustrated in Figure 3.2.

4A very early prototype of a system for personalized Web resource organization called PowerBookmarks
is described by Li et al. [LVC+99]. PowerBookmarks already included the means to share bookmarks
with other users but lacked any other social features such as collaborative tagging.
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Figure 3.2: Comparison of the dimensions of the collaborative tagging system Deli-
cious with the “offline” world. Figure (a) shows the user population (U )
of Delicious in relation to some of the world’s countries. If Delicious was a
country, its population size would rank it at position 113 of 223 in the world.
Figure (b) shows the number of resources managed by users on Delicious
(R) in relation to other collections of mankind such as the US Library of
Congress, the largest library in the world. The Open Directory Project, the
largest human-edited directory of the Web, trails behind with about 5 mil-
lion resources (see Section 3.1.2).
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• Size and popularity: Launched in 2003, Delicious has since become the most
studied folksonomy on the Web [WZBA10]. It has a large user population of more
than five million users as of 2008 (|U | > 5, 300, 000) who have created bookmarks
of more than 180 million unique Web resources (|R| > 180, 000, 000)5 – in other
words, it is a huge collection of user-contributed data. Judging from the reported
rate of growth between 2006 and 20086, the Delicious user community might have
superseded by now the populations of countries such as Switzerland and Austria.
Figure 3.2 puts these numbers into context. Similarly, the resources managed on
Delicious already cover a considerable fraction of the Web [NM08c, HKGM08].
The related tagging system BibSonomy [HJSS06a], for example, has been found to
be smaller than Delicious by two orders of magnitude [CSB+07]. Lastly, Delicious
is reasonably well-researched in the literature, which helps to make our results
comparable with other studies.

• Diversity of information: Any resource with a valid URL can be posted to De-
licious, which allows for a diverse range of content topics and resource types in
the Delicious folksonomy. Even though some studies argue against the topical
diversity on Delicious such as [HJSS06d], its diversity and the range of interests
of its users are still larger than those of other tagging systems (particularly sys-
tems that focus on a single resource type such as images) such as LibraryThing,
Flickr or Bibsonomy [BFNP08, AGS08b]. Parts of this can also be attributed to its
size: a folksonomy with more than five million users and 180 million unique re-
sources can hardly be considered as a uniform platform – even in the presence of
power laws. Additionally, Delicious has been found to be less reliant on its “Top
Users” than other tagging systems [HKGM08], thus limiting a potential global
bias of its folksonomy caused by a relatively small number of highly active users
(cf. Section 2.4.4 on power laws in folksonomies).

• Data granularity: As described in Section 2.2.2, Delicious is a broad folksonomy,
and as such it yields a finer data granularity for experiments and scientific stud-
ies than narrow folksonomies such as Flickr or YouTube. Every user on Delicious
may maintain his own personomyPu and tagging vocabulary Tu, thereby increas-
ing the data available within the folksonomy. For example, this also means that
Delicious provides a better starting ground for constructing user and resource
profiles from tagging data. Additionally, the finer granularity of a broad folkson-
omy such as Delicious ensures that the results of our studies can be generalized
to other folksonomies and collaborative tagging systems.

• Human and Machine Interfaces: In addition to the user interface for human
users, Delicious provides an application programming interface (API), i.e. an in-

5Delicious announcement, http://blog.delicious.com/blog/2008/11/delicious-is-5.
html, last retrieved on March 01, 2010.

6Delicious reported one million users in September 2006, two million users in March 2007, and five
million users in November 2008. Roughly speaking, its user population doubled every twelve months
in the past.
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terface for machines. Since this API and other communication channels such as
RSS7 streams were provided early on by Delicious, they have resulted in the cre-
ation of many third-party online services that interact with Delicious, thus further
stimulating the growth of its folksonomy. These technical interfaces also facilitate
our data collection tasks, even though we still have to fall back to non-standard
data retrieval techniques to collect all the data we need (see discussion below).

While most of the information on Delicious is publicly accessible, a convenient method
of retrieving sufficiently large amounts of data for scientific research is missing, and an
official Delicious data set has yet to be released. Due to business secrets, privacy rights
and other legal or commercial implications, services such as Delicious are very reluc-
tant to offer large-scale access to their user data. For example, it is impossible to obtain
the full bookmarking history of a particular document, or a large number of documents
that are assigned a particular tag. Similarly, the Delicious platform technically restricts
and throttles mass requests to its Web site and machine interfaces (API, RSS streams,
etc.), thus limiting the speed and efficiency of crawling and mining the Web site. Due
to these restrictions, researchers have been forced to fall back to improvised means to
build experimental data sets from Delicious, for example by directly crawling its Web
site and extracting any relevant information from the raw HTML sources. However,
such workarounds come with their own set of limitations, particularly regarding the
amount and granularity of information that can be extracted from such crawls. For ex-
ample, it is only possible to retrieve the creation date (“February 05, 2009”) of public
bookmarks from Delicious’ Web pages but not the creation time (“8.30 am”). One might
indeed argue that some of the differences in experimental results between scientific
studies of folksonomies can be attributed to the difficulty of collecting and compiling
proper experimental data sets [KS10].

In view of the above limitations, we have developed a custom programming library
called DeliciousAPI for working around Delicious’ technical restrictions on data re-
trieval. It combines a crawler component for mining the Delicious Web site and can
also collect data through the official Delicious API and news feeds (in RSS and JSON
formats) where available. Among its features, DeliciousAPI allows for the retrieval of
the bookmarking histories of Web resources (see Figure 3.3) and the public bookmark
collections of users. For example, the former feature can be used to compile the restric-
tion of F to a particular resource r, whereas the latter extracts a user’s posts in P(F ),
which can be used for building his personomy Pu. Since its creation and publication in
July 2007, DeliciousAPI has been downloaded about 10,000 times, bookmarked by more
than 250 Delicious users, and used by or integrated into several academic, commercial
and non-profit projects. DeliciousAPI is written in the Python programming language
and available as free and open source software licensed under the GNU General Public
License (GPL). It can be downloaded from the official Python Package Index8. With
regard to the time duration required to build experimental data sets, Delicious states
in its terms of use that developers should wait one second in between HTTP requests

7Really Simple Syndication, an XML-based feed format used to publish frequently updated content.
8DeliciousAPI, http://pypi.python.org/pypi/DeliciousAPI, last retrieved on March 01, 2010.

53

http://pypi.python.org/pypi/DeliciousAPI


CHAPTER 3. EXPERIMENTAL DATA

Figure 3.3: Delicious user interface (UI) - Bookmarking history of a Web resource.
The “history” of a Web resource on Delicious includes all public bookmarks
of the document including related metadata such as the creation date or
tags of bookmarks. In this example, the history of the article “Writing an
Hadoop MapReduce Program in Python” by the author of this thesis is
shown [Nol07c]. The article has been bookmarked by 850 users since its
publication on September 21, 2007, with the first Delicious bookmark being
created just two days later.

Figure 3.4: Delicious user interface (UI) - Browsing by tag. Delicious provides various
means to navigate and browse its folksonomy. For example, the most re-
cent bookmarks annotated with the tag research are available at the URL
http://delicious.com/tag/research. On the right side, tags related
to research are listed so that users can easily drill down through the list.
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to its services, with violations to this rule resulting in temporary access restrictions as
described above. However, we have found that in practice this interval is rather six to
seven seconds, particularly for extended crawling runs. This means, for example, that
it may take from several hours to several days to collect the data of a particular tag. The
long creation times of our experimental data sets described in Section 3.2 can be mainly
attributed to this restriction of Delicious.

3.1.2 Open Directory Project

In Web resource taxonomy, the Open Directory Project (ODP)9 is the largest, most com-
prehensive human-edited directory of the Web. Launched in 1998, the directory is con-
structed and maintained by a global community of 84,000 volunteer editors10 (UODP)
who evaluate and categorize Web resources based on common standards and best prac-
tices to ensure consistency. For instance, prospective editors have to file an application
form which includes a categorization test, and senior Open Directory editors must re-
view and evaluate the application before a new candidate can become an editor. This
review process helps to ensure that Web documents will properly organized and cate-
gorized in the catalog by all its editors.

At the time of writing, the ODP contained 4.8 million Web documents (RODP) in
about 590,000 categories. Documents are assigned to one or more category hierarchies
such as Arts > Crafts > Textiles > Weaving. ODP data is stored in RDF format11 and
freely available for download12 from the ODP homepage. At the time of writing, the
size of the ODP RDF data corpus was about 2 GB. We developed custom applications
written in the Python programming language for parsing and extracting the required
information from the RDF data corpus.

While the controlled Web taxonomy of the ODP is the largest of its kind, even a first
comparison with the dimension of the uncontrolled folksonomy of Delicious shows
that the latter system operates on a much large scale even though it is twice as young:

• Users: |UODP|
|UDelicious| =

84∗103

5,300∗103 ∼ 1
60

• Resources: |RODP|
|RDelicious| =

4,8∗106

180∗106 ∼ 1
40

Still, the ODP is a valuable data source that has been used in quite a number of prior
research studies such as [PSC+02, LYM02, Hav02, CNPK05, QC06, XBF+08, XXYY08].
It also forms the basis of the Web directory services of companies such as AOL and
Google13. In this thesis, we use the ODP data primarily as the ground truth for classi-

9Open Directory Project, http://www.dmoz.org/, last retrieved on March 01, 2010.
10Article on the Open Directory Blog, January 29, 2010; http://blog.dmoz.org/2010/01/29/

dmoz-a-decade-in-review/, last retrieved March 01, 2010.
11Resource Description Framework (RDF), described by the W3C, is a standard model for data interchange

on the Web. Available at http://www.w3.org/RDF/, last retrieved on March 01, 2010.
12Open Directory RDF Dump, http://rdf.dmoz.org/, last retrieved on March 01, 2010.
13Statement on ODP’s About page, http://www.dmoz.org/about.html, last retrieved on March 01,

2010.
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fication analyses and for integrating categorization information into our experimental
data.

3.1.3 Google

Google14 is currently the most popular search engine on the Internet15. What makes
Google interesting for researchers is that it provides various technical interfaces for
retrieving information from its databases that is very difficult – or even practically im-
possible – to compile with computing resources that are more limited than those of
Google.

In our work, we refer to Google for two purposes: First, for estimating the popularity
of a resource on the Web as measured by its PageRank [BP98], and second, for collecting
any known incoming hyperlinks of a given resource (also called its inlinks or backlinks)
[CDI98, F9̈9]. Both types of information rely on the retrieval and analysis of very large
volumes of real-world data – predominantly full Web crawls and subsequent data anal-
yses – of which the results are readily accessible from Google.

We consider the PageRank of a Web resource as a traditional measure of its popu-
larity on the Web. We say “traditional” in this context because PageRank is based on
an analysis of the Web graph whereas the popularity of a Web resource may also be
estimated by other means, for example by an analysis of a collaborative tagging system
such as Delicious and the social graph of its folksonomy (we propose such an approach
in Chapter 5). PageRank is a well-studied link analysis algorithm that assigns a weight-
ing to each element of a hyperlinked set of documents – such as the Web graph – with
the purpose of estimating its relative importance within the set.

In this context, we have to note some important differences between theory and prac-
tice with regard to PageRank. While a Web resource’s PageRank in the theory of Brin
and Page [BP98] is a rational number, the PageRank PR of a resource r as returned by
Google in practice is a natural number 0 ≤ PR(r) ≤ 10, where higher numbers denote
higher popularity. Additionally, the lowest PageRank with a value of zero (also called
PR0) does not necessarily mean that the resource is unpopular [Sob02]: It is rather a
special value that can have several different meanings, for example 1) the PageRank
value is not yet calculated because it is a new Web resource in Google’s search index; 2)
the resource has been banned by Google (e.g., a spam or phishing Web page); or 3) the
resource is considered as duplicate content.

For our experiments, we have developed custom applications based on the Google
SOAP Search API16 for retrieving PageRank information and incoming hyperlinks of a
Web resource from Google. In the latter case, we use these lists of incoming hyperlinks

14Google, http://www.google.com/.
15While an authoritative source for such statistics is missing, various market reports such

as http://comscore.com/Press_Events/Press_Releases/2010/1/comScore_Releases_
December_2009_U.S._Search_Engine_Rankings and http://googlesystem.blogspot.
com/2009/03/googles-market-share-in-your-country.html clearly rank Google Search
before competitors such as Microsoft Bing or Yahoo! Search.

16Google SOAP Search API, http://code.google.com/apis/soapsearch/. Please note that as of
December 5, 2006, Google stopped issuing new API keys for using its SOAP Search API.
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as input data for collecting incoming anchor texts [McB94] of a Web resource through a
targeted Web crawl as described in Chapter 4.

3.1.4 AOL500k

America On Line (AOL)17 is a US company providing various types of Internet services.
Particularly, it offers its own, AOL-branded Web search engine called AOL Search in
cooperation with Google, i.e. “[search results] are administered, sorted and maintained
by Google”18. The AOL500k corpus [PCT06] is one of the few publicly available large-
scale collections of search queries. It consists of a random sample of 20 million Web
queries collected from 650,000 users on AOL Search over three months in 2006. As the
result of these search queries, about 1.6 million different Web documents were visited
by users. What makes this collection so interesting for researchers is the vast amount of
data, which “represents real world users, un-edited and randomly sampled” [PCT06].

AnonID Query QueryTime Item ClickURL
Rank

8760 jojo the singer 2006-03-26 16:02:04 5 http://www.jojofan.com
8760 jennifer lopez 2006-03-26 16:05:29 4 http://www.allstarz.org
8760 jennifer lopez 2006-03-26 16:05:29 10 http://www.starpulse.com
8760 nicole richie 2006-03-26 17:28:58

Table 3.1: Excerpt of the AOL500k search query collection. The data set includes
{AnonID, Query, QueryTime, ItemRank, ClickURL} entries, where AnonID is an
anonymous user ID number, Query is the query – i.e. search keywords – is-
sued by the user (case shifted with most punctuation removed), QueryTime is
the time at which the query was submitted for search. If and only if the user
clicked on a search result, ItemRank and ClickURL information is available,
which represent the rank of the clicked item in the search result list and the
domain portion of the clicked item’s URL, respectively.

In the research work described in this thesis, we use AOL500k for integrating data of
search queries for Web documents into our experiments, particularly for our CABS120k08
data set (see Section 3.2.2 below). An excerpt of AOL500k is shown in Table 3.1.

3.1.5 The World Wide Web

The Web itself is another data source used in this thesis. In experiments that required,
for example, access to the HTML source codes or incoming anchor texts of Web docu-
ments, we directly retrieved this information from the World Wide Web. Here, we built

17AOL, http://www.aol.com/.
18Official statement on the About page of AOL Search, http://search.aol.com/aol/about#

webhome, last retrieved on March 01, 2010.
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custom applications on top of the free and open source Hadoop platform19. Hadoop im-
plements the concepts of Google’s patented MapReduce framework [DG04] and allows
for a distributed, parallel execution of programs on clusters of commodity hardware.

In our experiments, we have used Hadoop extensively for tasks in the areas of data
retrieval, distributed data storage, and data analysis. Most of our Hadoop applications
were run on a multi-node Hadoop cluster consisting of six physical machines20 with a
total of 24 cores running under a Linux operating system. During the course of these ex-
periments, the author of this thesis also published several Web articles [Nol07c, Nol07b,
Nol07a] on Hadoop that have since been contributed back into the Hadoop project and
been used by various universities as references for students in the context of distributed
programming21.

3.2 Main Data Sets

In the following sections, we give a brief overview of the main experimental data sets
that we have created and used for our research work described in this thesis.

3.2.1 DMOZ100k06

We published the DMOZ100k06 data set in two versions in June and August 2007, re-
spectively [NM07a, NM08b]. Initially created in 2006, we subsequently enhanced the
data set significantly over the course of 2007 through improved crawling and data ex-
traction techniques, particularly with regard to folksonomy data retrieved with our
DeliciousAPI library from the collaborative tagging system Delicious, whose technical
restrictions on bulk data retrieval required several workarounds to overcome on our
side (see Section 3.1.1). As we describe in detail in Chapter 4, we use this data set
primarily for studying the volume and availability of folksonomy data about Web re-
sources in practice, and how this user-contributed information compares to the contents
and metadata of these resources as provided by their authors or publishers.

For the initialization of this data set, we randomly sampled 100,000 Web documents
from the Web taxonomy of the Open Directory Project, which contained 4,818,944 Web
documents in more than 590,000 categories at that time. We discarded any documents
that could repeatedly not be downloaded from the Web, which yielded a final sample
of 97,574 documents. Then, we retrieved over the course of four months various data
about the sampled documents from the social bookmarking service Delicious (folkson-
omy data), the Open Directory Project (categorization information), the search engine
Google (popularity), the Internet Content Rating Association22 (content labels) and the

19Hadoop, http://hadoop.apache.org/, last retrieved on March 01, 2010.
20Machine specifications: Intel Xeon E5335 2.0 GHz Quad Core CPU, 4 GB of RAM, 150 GB RAID5 disk

space, Gigabit network interface.
21For example, the articles have been used by the Instructional Support Group of the Dept. of Electrical

Engineering & Computer Science at University of California, Berkeley [otDoEECS09].
22Internet Content Rating Association (ICRA), http://www.fosi.org/icra/. We present ICRA in

Chapter 7.
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World Wide Web (HTML content and metadata).
The size of the data set including HTML sources is about 1.6 Gigabytes. The data

set and our studies of it are described in detail in Chapter 4. An overview is shown in
Table 3.2. The data set is available for download at the homepage of the Hasso Plattner
Institute23 and the author’s homepage24.

Description Number Note Folksonomy Data
Symbol Source

Total documents 97,574 100.0% see text
Total users 165,192 U D
Total bookmarks 282,529 P(F ) D
Total tags 63,594 T D
Total tag assignments 758,242 Y D
Total categories 84,663 O
Total category assignments 115,458 O
Categorized documents* 97,574 100.0%
Bookmarked documents 18,220 18.7%
Tagged documents 17,342 17.8% R

*100% due to experimental setup

Table 3.2: Overview of the DMOZ100k06 experimental data set. Data sources: Deli-
cious (D), Open Directory Project (O). Data from the sources Google, Inter-
net Content Rating Association and World Wide Web are not shown in this
overview.

3.2.2 CABS120k08

We created and published the CABS120k08 data set in 2008 [NM08c]. As we describe in
detail in Chapter 4, we use this data set primarily for studying the relations of posts in
folksonomies provided by readers of Web documents, hyperlink anchor text provided by
authors of Web documents, and search queries of users trying to find these documents
on the Web. In other words, we use the data set to compare folksonomy data about
Web resources with other types of metadata in the research domain of Web information
retrieval.

For the initialization of CABS120k08, we constructed a sample list of Web documents
by an intersection of the Web taxonomy of the Open Directory Project and the search
query collection AOL500k25 Only such documents were included in the sample that

23Hasso Platter Institute, http://www.hpi.uni-potsdam.de/.
24Michael G. Noll, http://www.michael-noll.com/wiki/DMOZ100k06.
25Because the publication of AOL500k was accompanied with strong privacy concerns, we discarded

any AOL500k user IDs during data sampling. For more information about the issue of search query
logs and user privacy, e.g. how information about “anonymous” users can be derived from query log
analysis, we refer the interested reader to works such as [JKPT07, NS08].
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were both searched for and subsequently visited (AOL500k) as well as categorized
(ODP). Then, we retrieved over the course of three months data about the sampled doc-
uments from the social bookmarking service Delicious (full tagging information), the
search engine Google (popularity as well as incoming hyperlinks) and the World Wide
Web (HTML content and metadata; additionally, incoming anchor texts26 from other
Web documents). We removed any documents that could repeatedly not be down-
loaded from the Web, which yielded a final sample of 117,434 documents.

Description Number Note Folksonomy Data
Symbol Source

Total documents 117,434 100.0% see text
Total folksonomy users 388,963 U D
Total bookmarks 1,289,563 P(F ) D
Total tags 889,879 T D
Total tag assignments 3,383,571 Y D
Total searches 2,617,326 A
Total anchor texts 2,242,321 G,W
Total categories 84,663 O
Total category assignments 144,850 O
Categorized documents* 117,434 100.0%
Searched documents* 117,434 100.0%
Anchored documents 95,230 81.1%
Bookmarked documents 59,126 50.3%
Tagged documents 56,457 48.1% R

*100% due to experimental setup

Table 3.3: Overview of the CABS120k08 experimental data set. To prevent confu-
sion, we explicitly denote users in this table as folksonomy users because
the AOL500k search query corpus also includes (anonymized) user informa-
tion. Data sources: AOL500k (A), Delicious (D), Google (G), Open Direc-
tory Project (O), World Wide Web (W). Popularity information retrieved from
Google is not shown in this overview.

The size of the data set including HTML sources is about 4.4 Gigabytes. The data set
and our studies of it are described in detail in Chapter 4. An overview is shown in Ta-
ble 3.3. Coincidentally, the numbers of ODP categories are identical for the CABS120k08
and DMOZ100k06 data sets. The data set is available for download at the homepage of
the Hasso Plattner Institute27 and the author’s homepage28.

26Due to technical restrictions on the side of Google, we processed a maximum of 100 referring documents
for retrieving and extracting incoming anchor texts per Web document in the sample.

27Hasso Platter Institute, http://www.hpi.uni-potsdam.de/.
28Michael G. Noll, http://www.michael-noll.com/wiki/CABS120k08.
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3.2.3 SPEAR Collection

We created the SPEAR collection of data sets in 2009 [NAG+09, ANG+09]. As we de-
scribe in detail in Chapter 5, we use this collection for studying whether the expertise of
users in a collaborative tagging system can be derived from their activities and implicit
interactions in the folksonomy.

For the initialization of the SPEAR collection, we randomly sampled 110 “seed” tags
(see Table 3.4) from a pool of tags that consisted of all the 200 “popular tags” reported by
Delicious29 as well as over 200 additional tags collected by monitoring the front page
of Delicious. For each of these 110 tags, we created a separate data set by retrieving
the Web resources that had been assigned the tag, and subsequently downloaded the
bookmarking and tagging histories for each of these resources. The data collection
process took three months until completion.

The size of the full collection is about 2.5 Gigabytes. The collection and our studies
of it are described in detail in Chapter 5. An overview is shown in Table 3.5.

3d, admin, adobe, advertising, ajax, algorithms, api, apple, architecture, argument, art,
articles, audio, bath, blogs, blogsjava, books, bridge, browser, business, car, cms, collection,
comics, computer, convention, cooking, cool, culture, czaby, eShopping, economics,
electronics, email, entertainment, environment, fashion, fic, film, finance, firebug, firefox,
flash, flex, flickr, food, forum, framework, free, freeware, fun, funny, gallery, games, geek,
google, government, graphics, green, guide, hal, hardware, health, history, home, hosting,
house, howto, html, humor, icons, illustration, illustrator, images, imported, information,
inspiration, interactive, interesting, internet, iphone, japan, java, javascript, jobs, jquery,
kernel, kids, kubrick, language, later, learning, library, list, mention, nu, online, opera, sf,
soap, sun, the, todo, tube, tutorial, ukquake, wine, wsj, xp

Table 3.4: The 110 seed tags used for creating the SPEAR collection.

Description Number Folksonomy Data
Symbol Source

Total seed tags T0 (with T0 ⊂ T ) 110 T0 see text
Total users 1,198,863 U D
Total bookmarks 15,987,386 P(F ) D
Total tags 809,167 T D
Total tag assignments 52,435,158 Y D
Total documents 132,165 R D

Table 3.5: Overview of the SPEAR collection of data sets. Data sources: Delicious (D).

29Delicious Popular Tags: http://delicious.com/tag/.
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3.3 Summary

In this chapter, we have presented the major experimental data sources for the research
described in this thesis, as well as the experimental data sets that we have created from
these sources. In the next chapters, we will describe our different studies that make use
of these data sets for the purposes of gaining new insights into folksonomies (Chapter 4)
and leveraging folksonomies for information retrieval tasks (Chapters 5, 6 and 7).
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If I have ever made any valuable
discoveries, it has been owing
more to patient attention, than
to any other talent.

Sir Isaac Newton (1643–1727) 4
Exploring Folksonomies for

Web Information Retrieval

Folksonomies and collaborative tagging provide a large volume of user-contributed
data about resources on the Web. In addition to the recently emerged folksonomies,
several other sources of data have already existed that are being actively used in the
domain of Web information retrieval, for example the contents of Web resources them-
selves, metadata about these resources as provided by their authors, or users’ search
queries for resources as collected by Web search engines. When studying folksonomies
for Web information retrieval, it is therefore essential to not only examine folksonomies
by themselves, i.e. independently from their surroundings, but also to place them into
context with other data sources on the Web.

In this chapter, we describe in detail our empirical and explorative studies of folk-
sonomies in the context of Web information retrieval, investigate how much and what
kind of data is available in practice, how it compares and relates to other types of data
and metadata on the Web, and test our hypothesis with regard to the data contributed
by users in folksonomies:

Hypothesis 1 (New Perspective on the Web):
User-contributed data in folksonomies provides new, complimentary infor-
mation about Web resources that is not available through traditional types
of data and metadata on the Web, such as metadata contributed by the au-
thors of these resources.

4.1 Types of Web Data and Metadata

In the following sections, we will describe the different types of data and metadata
on the Web that we will analyze and compare in our subsequent experiments. An
overview is presented in Table 4.1. Our terminology in this chapter with regard to posts
in folksonomies, anchor text and search queries is listed in Table 4.2. We have already
described in Section 2.2 that bookmarks in Delicious can be adequately modeled by our
definition of posts in folksonomies. As such, we will use the term social bookmark, or
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simply bookmark, interchangeably with “post” for the remainder of this thesis1.

Name Type Who / Role Where / Source Section
Bookmarks M Web readers Folksonomies 4.1.1
Textual content D Web authors (owner) Web documents 4.1.2
HTML metadata M Web authors (owner) Web documents 4.1.3
Anchor text M Web authors (others) Web documents (others) 4.1.4
Search queries M Web searchers Search engines 4.1.5
Classification M Experts Web taxonomies 4.1.6

Table 4.1: Analyzed data and metadata types. The column Type differentiates between
data (D) and metadata (M) with regard to resources, i.e. Web documents.

Item Contains Example
Bookmark (a.k.a. post) Tags { research, web, folksonomy }
Anchor text Anchor words “homepage of the HPI”
Search query Search keywords “hpi potsdam research”

Table 4.2: Terminology and examples for posts (bookmarks), anchor text and search
queries. As explained at the beginning of this section, we use the term social
bookmark, or simply bookmark, interchangeably with “post”.

4.1.1 Folksonomies and Tags

First and foremost, we investigate the data in folksonomies, which is contributed by
users through collaborative tagging. We have already presented a comprehensive re-
view of folksonomies and collaborative tagging in Chapter 2. As we have noted previ-
ously, folksonomies are driven by end users, i.e. the “readers” or “recipients” of Web
documents. In contrast, other data types described in the following sections are pro-
vided by the authors or publishers of Web documents, or groups of expert users with
certain domain knowledge. Folksonomies may therefore be considered as a new kind
of Web metadata, which may provide a new perspective on the Web from the view-
point of end users. We will analyze how much and what kind of data is available in
folksonomies in practice, and how it relates to other types of metadata in the domain
of Web information retrieval.

4.1.2 Document Content

Traditionally, Web information retrieval has relied on techniques that extract data from
Web documents directly [Sin01, MRS08] – in other words, data that is provided by the

1Another reason is that prior research studies often uses the term social bookmark as well, thereby making
it more convenient for the reader of this thesis to perform comparisons across works.
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authors or publishers of Web documents. The first generation of search engines, for
instance, examined mostly the text and formatting of a Web document’s content – an
approach that is actually very close to classic information retrieval [Bro02]. In the fields
of classification and clustering of documents, bag-of-words and n-gram (also called “shin-
gles”) techniques are common [MRS08], and a plethora of refinements help to increase
the performance of these techniques such as the use of stop words or term-weighting
schemes like TF-IDF [SB88]. Unfortunately, such content-based approaches still suffer
from the difficulties of automatically inspecting and understanding non-textual Web
resources such as images, videos or Adobe Flash, and even textual data is not triv-
ial to analyze given the huge amount and variety of content on the Web. While it is
very easy for a human to analyze such content, it is a much harder task for machines
even with modern processing power. For example, image processing algorithms may
be able to identify human faces or nudity in images up to a certain reliability, but such
techniques are often restricted to very specific problem domains [WWG05, RJB06, JR02].
Secondly, results of machine learning algorithms depend heavily on quantity and qual-
ity of training input, and training input may vary with a user’s individual preferences
and characteristics [DHS01]. An algorithm for binary classification, for instance, will
not yield optimal results if it is not trained with a sufficient number of samples from
both classes, even though training tricks such as PEBL [YHC02, YHC04] may help up
to a certain extent.

In the past, researchers have tried to mitigate the problems of data extraction from
Web documents with techniques that use additional sources of information. Next to
analyzing special metadata about Web documents provided by their authors (see Sec-
tion 4.1.3), these techniques may use Web-specific features such as incoming or out-
going hyperlinks of a Web document to infer information about the document and its
neighbors [GGMP04, Kan04], a typical example being the HITS algorithm [Kle98] pro-
posed by Kleinberg in 1998. Hybrid solutions combine content-based and link-based
approaches, for instance by integrating the incoming anchor text of Web documents
into the analysis (see Section 4.1.4). Since we similarly believe that folksonomies repre-
sent a new, complimentary source of information about Web documents, we will ana-
lyze how user-contributed tags assigned to Web documents compare to their content.

4.1.3 HTML Metadata

The traditional method of providing metadata about Web documents is described in
the HTML and XHTML standards2, which define elements and attributes for specifying
metadata in the HTML source code of the documents for the purpose of helping users
find relevant content on the Web. Embedding this information into the HTML source
code of a Web document implies that it is provided by its authors or publishers. For
example, authors should use the TITLE element to identify the contents of a document.
While adding a title to a document is indeed common practice as we will see later, other
HTML metadata such as META KEYWORDS or META DESCRIPTION is often omitted

2XHTML2 Working Group Home Page at W3C, http://www.w3.org/MarkUp/, last retrieved on
March 01, 2010.

65

http://www.w3.org/MarkUp/


CHAPTER 4. EXPLORING FOLKSONOMIES FOR WEB INFORMATION RETRIEVAL

by Web authors. The most likely reason is that search engines like Google or Yahoo
do not fully trust in and therefore may discard a large amount of HTML metadata
because it is being abused by spammers [NNMF06]. For example, Google uses more
than 200 signals extracted from the Web graph, ranging from the language of a Web
document to the number and quality of other documents pointing to it [Cza09], but
META KEYWORDS is not one of them [Cut09]. Still, HTML metadata is actively being
used by Web authors [Hic05].

In our experiments, we will analyze how much and what kind of HTML metadata
is available in practice, and compare it with metadata that is provided by the users of
folksonomies, i.e. the readers of Web documents. We will focus our experiments on
the TITLE, META KEYWORDS and META DESCRIPTION elements since they are those
elements that are predominantly used in practice [Hic05].

4.1.4 Anchor Texts

As we have described above, early indexing, retrieval and ranking techniques in Web
information retrieval relied mostly on on-page content of a Web document, i.e. text
and formatting of its content. Nowadays, also off-page, Web-specific data such as link
analysis and anchor text are used to infer information about a Web document and its
neighbors [CDI98, Bro02, Kan04, KZ04]. Even though anchor text is not officially de-
fined as metadata in the HTML standard (see Section 4.1.3), it is commonly used as such
by Web search engines. It was first suggested in WWW Worm [McB94] in 1994, and the
most prominent example of today is the PageRank algorithm [BP98] proposed by Brin
and Page that powers their search engine Google.

Anchor text is defined as the text that appears within the bounds of an HTML <A>
tag3, i.e. the words associated with a hyperlink [KZ04]. The incoming anchor text of a
Web document is the anchor text of any incoming hyperlinks (also called its “inlinks”
or “backlinks” [CDI98, F9̈9]) to the Web document. If, for instance, Web document D1 is
referenced by document D2 through a hyperlink with the anchor text “HPI homepage”,
then “HPI homepage” is considered incoming anchor text of D1.

Anchor texts can therefore be exploited for associating terms with a Web document
that are not part of the document itself. Additionally, a Web document’s incoming
anchor text is mainly created by other Web authors, i.e. it represents – similar to tags in
a folksonomy created by Web readers – a different perspective on the Web document
than its original author might have. For convenience, we will use the plural “anchor
texts” when referring to multiple instances of anchor text throughout the remainder of
this chapter.

4.1.5 Search Queries

Search query log files are a major source of data used in Web information retrieval for
tasks such as user profiling and modeling search behavior [JP01, Bro02, LLC05], clas-

3For example, the anchor text of the hyperlink <a href=“labs.html”>quux</a> is “quux” and as-
sociated with the page labs.html.
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sification of search queries [BJL+07], re-ranking of search results [ZC06] or extracting
semantics [BYT07]. For instance, analyzing a user’s past search queries may help to
understand his goals, intents and interests in order to improve future searches – a user
who is deeply interested in technology might deem search results related to Mac com-
puters or the iPhone more relevant than those related to the fruit when searching for
“apple”. In other words, the search queries are mainly leveraged as data source for
deriving contextual information about users and Web resources.

We focus our analyses of search queries in this thesis on the textual search keywords
that users have specified when searching for information on the Web (in the example
above, the word “apple”). While both tags and search keywords are provided by end
users, it happens in different scenarios. In the case of Web search, users must judge the
value of a Web resource in the search results a priori, i.e. before they actually visit the
resource. Tagging a Web resource, on the other hand, is an explicit user action that is
performed a posteriori, i.e. after having read or otherwise “processed” the resource.

A first hint at similarities between tags and search keywords is provided by Krause
et al. [KJHS08]. They derive a “folksonomy” from Web search by extracting (user, search
keyword, resource) triples from search query logs. They observed that the distribution
between tags (derived from Delicious) and queries as well as resources is very similar,
and that the clicking behavior of search engine users based on the displayed search
results and the tagging behavior of users in a folksonomy is driven by similar dynamics.
In this chapter, we will extend these studies by analyzing search keywords in various
dimensions and also comparing them with user-contributed data in folksonomies and
other Web-related metadata.

4.1.6 Classification

Another source of information about Web documents are taxonomies such as the Open
Directory Project (ODP; see Section 3.1.2) and the Yahoo! Directory4. These databases pro-
vide a directory of Web resources organized into a fixed set of categories. As we have
described in Chapter 3, we use the data of the Open Directory Project in our experi-
ments as the ground truth for classification analyses and for integrating categorization
information into our experimental data. Similar to the Dewey Decimal Classification sys-
tem [OCL], the ODP is maintained by a community of domain experts who share a com-
mon strategy and policy for performing their work. We will compare this controlled,
top-down expert classification of Web documents with the uncontrolled, bottom-up ap-
proach of folksonomies.

4.2 Experimental Setup

For our experiments, we have constructed and analyzed two large-scale corpuses of
real-world data, DMOZ100k06 and CABS120k08, which we have introduced in Sec-
tion 3.2. Both comprise a variety of experimental data from several sources on the

4Yahoo! Directory, http://dir.yahoo.com/.
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Web as shown in Table 4.3.

Data Source DMOZ100k06 CABS120k08
Delicious x x
Open Directory Project x x
Google x x
Internet Content Rating Association x
AOL500k x
World Wide Web x x

Table 4.3: Comparison of data sources between DMOZ100k06 and CABS120k08. In
addition to the difference with regard to the selected data sources, the infor-
mation extracted from these sources also varies between the two data sets as
described in Section 3.2.

While both data sets have been built using similar data sources, there are notable dif-
ferences between the two. Particularly, there are differences in the data sampling pro-
cesses and in the time of creation. DMOZ100k06, which we created in 2006 [NM07a]
and extended in 2007 [NM08b], is based on a random sample of Web documents from
a single data source (ODP), whereas CABS120k08, which we created in 2008 [NM08c], is
based on an intersection of Web documents from two data sources (ODP and AOL500k).
For the initialization of DMOZ100k06, we randomly sampled 100,000 Web documents
from the Web taxonomy of the ODP, which contained 4,818,944 Web documents in
more than 590,000 categories at the time. The full data sampling process eventually
resulted in 97,574 Web documents (see Section 3.2.1 for details on the construction of
DMOZ100k06). For the initialization of CABS120k08, we built a sample list of Web
documents by creating an intersection of the ODP and the search query collection
AOL500k, which contains 20 million Web queries collected from 650,000 users who
subsequently visited about 1.6 million different Web documents as a result of these
queries. Only such documents were included in the sample list that were categorized
(ODP) as well as searched for and actually visited (AOL500k). The full data sampling
process eventually yielded a final set of 117,434 documents (see Section 3.2.2 for details
on the construction of CABS120k08).

We have had several reasons for the creation and use of two such data sets. On the
one hand, our decision to leverage AOL500k as a data source was mainly born out
of necessity: Only a few large-scale data sets of real-world search queries have been
published so far, which inevitably means that there do not exist many alternatives to
choose from5. Of these, AOL500k has arguably been the most studied (cf. [PCT06,

5Releasing any kind of user data – such as a collection of search queries – is a delicate subject. For ex-
ample, shortly after the release of the AOL500k corpus in 2006 (see Section 3.1.4), AOL spokesman
Andrew Weinstein had to apologize publicly for the release [Arr06]. Even though there was no per-
sonally identifiable data provided by AOL with the data records, search queries themselves could be
analyzed to infer such information. Eventually, the publication of AOL500k caused AOL to dismiss the
two responsible scientists and the company’s Chief Technology Officer, but has since also stimulated
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JKPT07, JKHS08, KHS08, KJHS08, HKGM08, Rad09, NO09]). For these reasons, we
have decided to use it for integrating user data from Web search into our experiments,
namely in the form of the CABS120k08 corpus.

On the other hand, the AOL500k data set – and thus our CABS120k08 data set, which
relies on the former – has some potential drawbacks for the research work described in
this thesis. Firstly, AOL500k includes only the domain portion of Web documents, i.e.
the “true” URLs of clicked search results are truncated. For example, the URL of the
Wikipedia article on the World Wide Web

http://en.wikipedia.org/wiki/World_Wide_Web

would be shortened to

http://en.wikipedia.org

in AOL500k. This truncation negatively impacts the granularity of the data set with
regard to Web documents and would make analyses such as the study of the spatial
granularity of folksonomies impossible (see Section 4.3.3).

Secondly, AOL500k is solely comprised of Web documents displayed in search re-
sults, which by definition means that these documents are thought to be the most rel-
evant and most popular documents on the Web that match the user’s query. We may
therefore expect that, for example, the mean popularity of Web documents in AOL500k
(and our CABS120k08 data set) is higher than a truly random sample of documents
on the Web. And indeed, we found that the average popularity of Web documents in
CABS120k08 is higher than in DMOZ100k06: the mean PageRank values are µC = 3.93
(standard deviation σC = 2.45) and µD = 3.13 (σD = 1.66), respectively. Similarly,
CABS120k08 does not contain any Web documents with a PageRank of zero (cf. Sec-
tion 3.1.3).

For these reasons, we have decided to use the DMOZ100k06 data set in addition to
CABS120k08 for our experiments described in this chapter. While it is still an open
research question how to create a truly random, unbiased sample of documents from
the Web [BHK+09, Sne06, BYG06], we argue that our decision to use a random sample
of the Open Directory Project is a reasonable approach that balances our requirements
of unbiasedness and of having access to categorization information of Web documents,
which we need for a comparative analysis and evaluation of folksonomies with regard
to classification tasks (see Section 4.1.6).

4.3 Experimental Results

In the following sections, we describe the outcomes of our experiments and discuss
their implications. We will note differences between the analyses of the DMOZ100k06
and CABS120k08 data sets where necessary and appropriate. Whenever terms in our
experimental data were analyzed or compared (e.g. tags or words in anchor texts), it

and enabled a number of research studies in the area of Web information retrieval.
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was performed without case sensitivity, i.e. terms such as “Philosophy” and “philoso-
phy” were considered the same.

4.3.1 Overview

The data sets DMOZ100k06 and CABS120k08 consist of 97,574 and 117,434 Web docu-
ments, respectively. Due to the creation processes of the data sets as described in the
previous section, each document in DMOZ100k06 and CABS120k08 was categorized
into at least one category. Additionally, each document in CABS120k08 was searched
for at least once. We discarded the special tags system:unfiled and imported from
all of our analyses described in the following sections – the former is automatically
added by Delicious to bookmarks without user-provided tags, and the latter is auto-
matically added to bookmarks during data import to Delicious from other applications6

– but kept them in the data set as-is. A statistical overview of both data sets is shown in
Table 4.4 and in Figure 4.1. Per-document statistics are shown in Table 4.6, and Table 4.5
lists the most popular tags for each data set.

In accordance with previous studies described in Section 2.4.4, we found power-law
distributions for users, tags and resources in our data sets. However, since power laws
in folksonomies have already been treated thoroughly in prior work, we will not dis-
cuss our respective results in detail in this thesis.

DMOZ100k06 CABS120k08 Folksonomy
Description Number Note Number Note Symbol
Total documents 97,574 100.0% 117,434 100.0%
Total users 165,192 388,963 U
Total bookmarks 282,529 1,289,563 P(F )
Total tags 63,594 889,879 T
Total tag assignments 758,242 3,383,571 Y
Total search queries - - 2,617,326
Total anchor texts - - 2,242,321
Total categories 84,663 84,663
Total category assignments 115,458 144,850
Categorized documents* 97,574 100.0% 117,434 100.0%
Searched documents* - - 117,434 100.0%
Anchored documents - - 95,230 81.1%
Bookmarked documents 18,220 18.7% 59,126 50.3%
Tagged documents 17,342 17.8% 56,457 48.1% R

*100% due to the creation processes of the data sets (see Section 3.2)

Table 4.4: Comparison of the DMOZ100k06 and CABS120k08 data sets.

6A data import, for example, includes a user importing his bookmark collection from applications such
as the Web browsers Microsoft Internet Explorer or Apple Safari.
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Figure 4.1: PageRank distributions of DMOZ100k06 and CABS120k08. The black
and white bars denote the number of Web documents per PageRank for
DMOZ100k06 and CABS120k08, respectively. DMOZ100k06 does not con-
tain any documents with a PageRank of 10, whereas CABS120k08 does not
contain any documents with a PageRank of 0.

DMOZ100k06 CABS120k08
Position Tag Count Tag Count

1 reference 16,282 news 77,661
2 software 14,263 reference 54,467
3 news 12,340 software 46,061
4 blog 10,921 shopping 41582
5 web 8,971 travel 40,795
6 tools 8,389 blog 39,172
7 design 8,233 design 38,252
8 search 7,843 music 37,704
9 opensource 7,347 tools 30,350

10 programming 7,075 art 29,140
11 css 6,733 web 25,005
12 webdesign 6,328 photography 23,575
13 video 5,583 politics 22,528
14 music 5,475 technology 21,746
15 art 5,439 business 20,388

Table 4.5: Top tags of DMOZ100k06 and CABS120k08 by tag count. The overlap of
the Top tags is 60%, i.e. 9 out tags appear in both Top 15 lists.
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DMOZ100k06 CABS120k08
Statistics per document Mean Std. dev. Mean Std. dev.
Bookmarks 2.90 71.35 10.98 69.98
Tags 1.90 17.28 7.07 28.90
Tag assignments 7.77 190.96 16.01 265.20
Categories 1.18 0.47 1.23 0.54
Category depth 6.66 1.90 5.82 1.91
Anchor texts - - 19.10 41.81
Search queries - - 22.29 476.28
PageRank 3.13 1.66 3.93 2.45

Table 4.6: Per-document statistics of DMOZ100k06 and CABS120k08.

Firstly, we can observe a significant difference in the total numbers between the two
data sets with regard to folksonomy-related data. On the one hand, this can be ex-
plained by the different data sampling processes as described in Section 4.2 – the data
sampling of CABS120k08 might favor documents that are more likely to be tagged by
users. We have already noted that the mean popularity of documents in CABS120k08
is higher than in DMOZ100k06, which is also illustrated in Figure 4.1. Our experiments
show that the more popular a Web document is with regard to its PageRank, the more
likely the document is to be bookmarked and tagged (see Table 4.7 and the discussion
further below), thereby supporting this argumentation. On the other hand, the differ-
ence in total numbers can also be attributed partly to the difference in the data sets’
creation times. We constructed CABS120k08 several months after DMOZ100k06, so
users in Delicious “had more time” to contribute tagging data to documents in the data
set. We already made a similar observation between the initial version of DMOZ100k06
[NM07a] and its final version [NM08b] that we study in this thesis: Here, the number
of social bookmarks – for the same sample of Web documents – increased by +32.6%
during the course of three months. But even though there are some differences between
DMOZ100k06 and CABS120k08 as described above, we will also see that both data sets
exhibit similar characteristics in other data dimensions, for example the length of social
bookmarks discussed in Section 4.3.4.

Secondly, we found that the amount of Web documents that have been tagged by
users was surprisingly large for both DMOZ100k06 and CABS120k08, with relative fre-
quencies of 17.8% and 48.1%, respectively. As such, collaborative tagging seems to
cover already a considerable fraction of the Web. This is particularly interesting since
the collaborative tagging system of Delicious had been in operation for only five years
at the time we built our experimental data sets. Furthermore, if we follow the assump-
tion that incoming hyperlinks and anchor texts are indications that a Web document
is perceived as “important” or “interesting” by the referring party [BP98, ABC98], col-
laborative tagging even covered P(tagged | anchor text) = 55.2% of “relevant” Web
documents in the CABS120k08 data set. This result is very encouraging with regard
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to leveraging folksonomies for Web information retrieval, because it suggests that the
user-driven folksonomies are indeed rich sources of information about the Web. Simi-
larly, we observed that users strongly prefer to add tags to their bookmarks7. In other
words, if users bookmarked a Web document, they also tagged it in almost all cases:
95.2% and 95.5% of bookmarks in DMOZ100k06 and CABS120k08, respectively, include
tagging information. This is another promising result because it indicates that users do
indeed see a benefit in the provisioning of metadata such as tags for annotating re-
sources, and that tagging is not perceived as an additional burden on top of the cost of
bookmarking (cf. [ABC98]). We have described possible explanations for this finding
in Section 2.4.3, where we have discussed the user motivation and functions of tags in
folksonomies.

Thirdly, there were strong positive correlations of a document’s volume of tagging
data with its popularity on the Web (as indicated by its Google PageRank), i.e. the more
popular a document, the more likely it was to be tagged: Spearman-r [Coo06] were
+0.99 and +1.00 for DMOZ100k06 and CABS120k08, respectively8. Table 4.7 lists the
detailed results. Additionally, tagging activities were shifted towards lower PageRanks
than bookmarking activities: In DMOZ100k06, the mean PageRank was 5.71 for tagged
documents and 6.36 for bookmarked documents (CABS120k08 supports this finding
with means of 5.58 and 6.09, respectively).

DMOZ100k06 CABS120k08
PageRank Bookmarked Tagged Bookmarked Tagged

0 0.031 0.029 - -
1 0.021 0.019 0.100 0.090
2 0.034 0.030 0.157 0.138
3 0.088 0.080 0.314 0.289
4 0.228 0.215 0.525 0.498
5 0.441 0.425 0.731 0.710
6 0.646 0.633 0.870 0.857
7 0.809 0.804 0.926 0.918
8 0.906 0.886 0.965 0.958
9 0.955 0.955 0.981 0.981

10 - - 1.000 1.000

Table 4.7: Relative frequencies of bookmarked and tagged documents in
DMOZ100k06 and CABS120k08 by PageRank. For instance, 52.5% of
documents with a PageRank of 4 were tagged in CABS120k08.

A popular argument put forth in favor of the “power” of the Social Web in the context
of information retrieval is that user collaboration and contribution are supposed to help

7As we have noted previously, the provisioning of tags for bookmarks on Delicious is optional and by no
means required for the user.

8Kendall-τ [Coo06] were +0.95 and +1.0 for DMOZ100k06 and CABS120k08, respectively.
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with regard to retrieving “rare gems” from the masses of documents on the Web that
search engines miss to identify as such. For example, even though an interesting Web
document might not be indexed or ranked highly enough by search engines, word-of-
mouth propaganda among users through email, social bookmarking or other means
could eventually direct visitors to it (a scenario commonly quoted for the blogosphere).
Our findings however suggest that users tend to focus their tagging activities on Web
documents that are already popular, and less on unpopular ones. For example, the
majority of Web documents in the DMOZ100k06 data set, 52.3%, has a PageRank of 3
or 4 but receives only 17.6% of all tags. We therefore argue that folksonomies are less
suited for the scenario described above – at least from a global point of view9.

The results described above could also be an indication that the ranking models and
algorithms of search engines such as Google or Yahoo! are quite capable of identifying
interesting and relevant resources for Web readers even though their algorithms such
as PageRank [BP98] or HITS [Kle98] are based on information provided by the authors
of Web documents (e.g. by regarding hyperlinks to other resources as an indication of
their importance). On the other hand, it is also possible that the PageRank of a highly
tagged document will eventually increase over time because it is a center of attention
in a folksonomy. Unfortunately, our experimental data does not include historical in-
formation of a document’s PageRank. Hence, we cannot verify this claim for the work
described in this thesis and have to leave it up to future research.

In summary, we found evidence in this section that folksonomies provide large vol-
umes of data about Web resources and already cover a considerable fraction of the Web.
Users seem to be willing to contribute such metadata readily via collaborative tagging.
Interestingly, we observed strong correlations of user activity and resource popularity,
i.e. users focus their tagging activities on documents that are popular on the Web. In
the following sections, we will therefore pay closer attention to the impact of resource
popularity on experimental results.

4.3.2 HTML Metadata and Tagging

In this section, we compare the availability of metadata about Web documents as pro-
vided by their authors through HTML elements with metadata provided by their read-
ers through tagging. We define availability as the share of Web documents with meta-
data (or tagging data, respectively) in the total set of documents. Figure 4.2 shows the
results of our analysis for the DMOZ100k06 data set. A first observation is the relatively
stable availability of HTML metadata across all PageRanks. The most frequently used
element was the TITLE element with a micro-average of 97.14%10. META KEYWORDS
slightly outperformed META DESCRIPTION, which agrees with the results of [Hic05].
Both META KEYWORDS and META DESCRIPTION occurred with a frequency of around

9Locally, users may form networks or users groups on collaborative tagging systems and collectively
share references to interesting resources, i.e. the “rare gems” described in the text, with their network
of friends.

10This result correlates with the findings of Hickson [Hic05]. While exact numbers are not given in the
study, “the overwhelming majority of pages specify [the title element]”.
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Figure 4.2: Web authors versus Web readers. Availability of HTML metadata about
Web documents provided by their authors compared with tagging data pro-
vided by folksonomy users in DMOZ100k06 (D). The gray line denotes the
tagging results of CABS120k08 (C) for comparison across our two experi-
mental data sets. Of all PageRank 5 documents in DMOZ100k06, for exam-
ple, 39.9% contained META KEYWORDS information and 42.5% were tagged.

40% in the data set, with two exceptions: Web documents with a PageRank of 0 (PR0)
had a lower frequency of around 25%, and Web documents with PageRank 8 (PR8) had
a higher frequency of around 47%.

A possible explanation for the lower availability of META DESCRIPTION and META
KEYWORDS for PR0 documents is that these documents might have been assigned a
PageRank of 0 intentionally by Google for syntactic deficiencies such as improper com-
position, faulty document structure or erroneous markup. In other words, the lack of
META KEYWORDS and META DESCRIPTION might be cause and effect. The frequency
peak at PageRank 8 is harder to explain, and we are unsure yet how to interpret it cor-
rectly. We conducted a second, independent test11 for verification, which confirmed
this peak at PR8. We still have to find out what might cause this peak.

In summary, the availability of metadata that is provided by the authors of Web docu-
ments is relatively stable across all PageRanks. In folksonomies, however, the availabil-
ity of tagging data increases with a document’s popularity on the Web. This suggests
that author-supplied HTML metadata is – on a quantitative level – a richer source of
data for less popular documents, whereas folksonomies contain more data about pop-

11We built a different sample of 341 PR8 documents. An analysis showed a similar trend with regard to
the availability of HTML metadata. Here, the result was 49.9% for both META KEYWORDS and descrip-
tion, where each document with META KEYWORDS also had a META DESCRIPTION and vice versa.
Additionally, we tested 105 documents with a PageRank of 9, which resulted in 46.7% for both META
KEYWORDS and META DESCRIPTION. Again, we found the same strong correlation between availabil-
ity of META KEYWORDS and META DESCRIPTION as for PR8.
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ular ones. We will follow up this analysis in Section 4.3.5, where we will investigate
how much new data about Web documents is provided by folksonomies by comparing
tagging data with the HTML sources of documents, which include HTML metadata.

4.3.3 Spatial Granularity of Tagging

In this section, we examine whether users in folksonomies tend to tag documents higher
up or deeply within a Web site’s document hierarchy. Here, we analyze the URL12 of
tagged Web documents. URL schemes such as HTTP for Web documents contain names
that can be considered hierarchical, and the components of the hierarchy are separated
by a “/” delimiter character. We therefore based the calculation of a URL’s depth on the
“/” separator so that a top-level URL such as

http://www.example.com/

would be assigned a depth of 0 (zero), whereas a URL such as

http://www.example.com/path/file.html

would be assigned a depth of 2, and so on. Since the CABS120k08 data set contains
by definition (see Section 4.2) only top level Web documents with a depth 0, we used
the DMOZ100k06 data set for this experiment. The results are shown in Table 4.8.

URL depth Mean Std. dev.
All Web documents 1.06 1.74
Bookmarked Web documents 0.48 1.06
Tagged Web documents 0.48 1.05

Table 4.8: Spatial granularity of folksonomies. Mean URL depths of Web documents
including standard deviations in DMOZ100k06.

We observed that users tend to tag top-level Web documents rather than those doc-
uments located deeply within a Web site’s hierarchy. This result is interesting because
intuitively one might think that users would be more likely to add those Web docu-
ments to their personal collections that are harder to (re-)find or access. Documents
with deeper URLs, however, are often more complicated to navigate to, for example
because it takes longer to traverse a Web site’s hierarchy or to manually enter their full
URL. Our results suggest that tagging data in folksonomies gravitates towards the en-
try or top-level pages of Web sites. For example, this outcome means that an application
that needs to work on deeper Web documents might require additional data sources,

12RFC 3986 “Uniform Resource Identifier (URI): Generic Syntax”, available at http://www.ietf.org/
rfc/rfc3986.txt, last retrieved on March 01, 2010.
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or employ techniques that infer information from their “parent” documents, for which
a larger volume of tagging data is likely available.

A comparison of our two data sets DMOZ100k06 and CABS120k08 supports this
finding on spatial granularity of folksonomies. The CABS120k08 data set comprises
only top-level Web documents (depth 0). While it contains only +20% more Web doc-
uments than DMOZ100k06, the total number of tag assignments in CABS120k08 is
|YC| = 3, 383, 571 compared to |YD| = 758, 242 for DMOZ100k06, i.e. a relative dif-
ference of about +350%. Similarly, the percentage of tagged documents in CABS120k08
and DMOZ100k06 are 48.1% and 17.8%, respectively.

In summary, we found in this section that users in folksonomies focus their tagging
activities on resources higher up in a Web site’s hierarchy, particularly the entry pages
and homepages. The majority of tagging data will therefore be available for these top-
level documents. However, information retrieval techniques that want to target deeper
documents could augment the data of these documents with folksonomy-derived in-
formation about the parent documents higher up in the hierarchy. For example, a deep
Web document describing a multimedia playback device could be identified as iPod13

product information if parent documents were primarily tagged with apple, music,
itunes.

4.3.4 Cardinality

The length of a search query, i.e. the number of search keywords per query, has been
studied in the past and reported as being rather short with 2.x keywords on aver-
age [SWJS01]. Similar results have been reported for the number of words in anchor
text [EM03]. We were interested in comparing the length of social bookmarks in folk-
sonomies with search queries and anchor texts. We define the length of a bookmark
to be the number of its tags, and the length of an anchor text to be the number of its
anchor words. These lengths can be considered as the per-item cardinality of each meta-
data type, which indicates how much data is provided by a single “data unit” of each
metadata type.

We found that the micro-averages of the length of searches, bookmarks and anchor
texts in the CABS120k08 data set were µS = 2.89, µB = 2.49 and µA = 2.43, respec-
tively14. As comparison, the length of bookmarks in DMOZ100k06 was µB

∗ = 2.51.
While it may seem at first glance that the length of bookmarks and anchor texts are

almost equal, we found that the lengths varied significantly by the popularity of Web
documents (indicated by their Google PageRank) as shown in Figure 4.3. There were
strong negative correlations with document popularity for search queries and anchor
texts: Spearman-r are -0.82 and -0.81, respectively. On the other hard, there was a
positive correlation with document popularity for bookmarks: Spearman-r was +0.6715.
This result suggests that anchor texts provide a larger amount of data for less popular
Web documents whereas social bookmarks do so for more popular documents, with

13The iPod is a brand of portable media players made by Apple Inc.
14Wetzker et al. report an average length of 3.16 for bookmarks in [WZB08].
15Kendall-τ for search queries, anchor texts and social bookmarks were -0.64, -0.73 and +0.47, respectively.
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Figure 4.3: Cardinality of metadata. Average length of bookmarks, anchor texts and
search queries in CABS120k08.

the break-even point being at PageRank 4. In the CABS120k08 data set, the amount
of data provided by the average anchor text is larger for 37% of documents (PR1–PR3)
compared to 29% of documents in the case of social bookmarks (PR5–PR10). So in direct
comparison, anchor texts “win” in the first third of the cases, draw in the second third,
and lose in last third; vice versa for bookmarks.

Looking at searches, the average search query dominated anchor text across all Page-
Ranks. Compared to social bookmarks, search query length has a break-even point with
bookmarks at PR6, and a second at PR1016. Here, the average search query provided
more data for 90% of documents compared to only 3% of documents for social book-
marks. On the other hand, the data provided by social bookmarks and anchor texts has
a stronger connection to the targeted Web documents than search query data, which
might offset the quantitative advantage of the latter. As we have noted previously, a
user may click on a search result but he may not know in advance whether the search
result really satisfies his information needs, i.e. the association of search keywords and
clicked result documents are rather weak. Tagging a document or hyperlinking a doc-
ument (including anchor text), however, represent actions that generally happen after
having read or otherwise “processed” the document [HRS07].

Finally, we observed that the average lengths of all metadata types stayed between

16The interpretation of the break-even point at PR10 should be treated with care since CABS120k08 con-
tains only five Web documents with PR10.
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two and three terms – even when taking variations due to document popularity into
account. While we find it difficult to explain – we hypothesize that it might have a
cognitive explanation – humans seem to prefer using only two or three terms per ac-
tion even across different problem domains (collaborative tagging, hyperlink creation,
searching the Web).

4.3.5 Novelty

A lot of tasks in information retrieval employ techniques to extract data from Web doc-
uments, for example for indexing or classification purposes. On the other hand, not all
information is captured by the terms in a document’s HTML source, which includes its
textual content and HTML metadata. Without further techniques such as anchor text
analysis or latent semantic indexing [DDL+90], a Web search for “biology” would not
turn up any documents where the term “biology” does not appear in the document
content [Kle98].

In this section, we analyze how much new data is provided by social bookmarks, an-
chor texts and search queries – in other words, data that is external to a Web document.
We are interested in finding out how much each metadata type is suited to add new in-
formation to Web documents, and thus how much it could help to improve information
retrieval tasks in the context described above.

We define novelty as the percentage of unique terms of a document that are not al-
ready present in its content. The terms for social bookmarks are represented by the set
of unique tags aggregated over all bookmarks of a document, i.e. if multiple users add
the tag research, it is counted only once. The terms for anchor texts (unique anchor
words) and search queries (unique search keywords) are defined similarly. The cor-
responding document is represented by the set of unique terms in its textual content
(i.e. text within its BODY element) and HTML metadata (TITLE, META KEYWORDS and
META DESCRIPTION). The results are shown in Figure 4.4.

Firstly, we observed that the amount of new information provided by any metadata
type stayed below 7% of novelty for about 90% of documents in the CABS120k08 data
set (PR0–PR5). Considering that we introduced a uniqueness requirement for terms,
which effectively reduced the total number of terms per metadata type and terms per
document in our experiment, this result is actually promising – about 1 of 20 unique
terms is new to a document (see the discussion on the study of Bischoff et al. [BFNP08]
below). Search keywords dominated tags which in turn dominated anchor words. In-
terestingly, the curves of search keywords and tags showed similar behavior: Both in-
creased with a document’s popularity (indicated by its Google PageRank), with larger
increases starting at PR6. Novelty for words in anchor text basically stayed below the
5% threshold with a small peak at PR10.

Secondly, we found that tags provided more new data than anchor words. This indi-
cates that tags are a better source for new data, particularly for popular Web documents.
However, we will report in Section 4.3.7 that the similarity of tags and anchor texts was
relatively low in the CABS120k08 data set, which indicates that they provide different
kinds of information. We therefore argue that if one is interested in collecting new data,
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Figure 4.4: Novelty Mean percentage of new data provided by a document’s tags, an-
chor words and search keywords in CABS120k08. On average, for example,
7.5% of tags of a PageRank 7 document are not present in the document.

one should in fact consider evaluating both metadata types.
We conclude that the metadata provided by social bookmarks, anchor texts and

search queries provide new information about Web documents. This observation is
similar to the results of Heymann et al. [HKGM08] and Bischoff et al. [BFNP08].
However, both of these studies report significantly higher numbers of about 45-50%
for novelty of information contributed by tags. Unfortunately, the exact processes of
matching tags with a document’s source were not described in detail, which makes it
difficult to explain the differences in experimental results. We could reproduce such
high numbers for novelty, however, when a) we restricted tagging information to the
most popular tags of Web documents, i.e. when the long-tail of rarely used tags was
excluded from analysis, or b) we relaxed the uniqueness requirement for tags during
the matching process, i.e. counting multiple matches of the same tag multiple times.
We therefore argue that our results agree with theirs in principle.

4.3.6 Diversity

In this section, we study the inherent diversity of information provided by folksonomies,
anchor texts and search queries. This analysis is related to the research of the consen-
sus of users in folksonomies as described in Section 2.4.4. As we have noted in that
section, when we talk about emergent consensus and stabilization of folksonomies, we
are mainly referring to such tags that have managed to “escape” the long tail of tag
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distributions for both users and resources. In this section, however, we conduct an
indiscriminate analysis of tagging data, i.e. including the long tail.

Generally, we can assume that users do not collaborate when searching the Inter-
net, or when creating Web documents with hyperlinks and anchor texts to other pages.
While there is a collaboration aspect for social bookmarking and tagging in folksonomies,
it is only one facet of many (see Section 2.4.3).

For our analysis, we have used the measure of entropy [Sha48] from information the-
ory to determine the diversity of information with regard to Web documents. In the
context of folksonomies, a document’s tags and their tag counts can be considered as a
“tag histogram”, and the entropy E of such an histogram can be computed by

E(d) = − ∑
ti∈T (d)

p(ti|d) log p(ti|d)
�� ��4.1

where T (d) is the set of tags with which document d has been annotated, and p(ti|d)
is the probability of d being annotated with tag ti. We used the observed tag counts
in the CABS120k08 data set to estimate the probabilities p(ti|d). We defined similar
entropies for anchor texts (anchor words and their counts) and search queries (search
keywords and their counts). Finally, we normalized entropy values so that zero entropy
was represented by 0 and maximum entropy by 1. The results of our analysis are shown
in Figure 4.5.

Firstly, we found strong negative correlations with document popularity (indicated
by Google PageRank) for all metadata types: Spearman-r for tags, anchor words and
search keywords were -0.96, -0.87 and -0.99, respectively17. With increasing document
popularity, the diversity of information decreased, thus becoming more uniform. For
tags, this finding also supports the notion that a tagging “consensus” emerges the more
people are tagging a resource (see Section 2.4.4) because, as we have noted previously,
the volume of tagging data increases with a document’s popularity on the Web.

Secondly, we observed that search queries showed the highest diversity. The reason
could be that searching the Internet is arguably the most “volatile” user action in our
study. In contrast, users create bookmarks or hyperlinks with anchor text only after
reading a document and perceiving it as useful. This process seems to serve as a kind
of “noise filter” which search queries are lacking, supporting the results of studies such
as [HRS07]. Similarly, users do not only have problems with finding relevant informa-
tion on the Web per se, they also have problems with formulating good search queries
[SJWS02]. Additional effects such as users becoming accustomed to automatic spell
correction by search engines might further increase the diversity of search queries.

Thirdly, we found that tags were generally more diverse than anchor texts. On the
one hand, this result suggests that tags are noisier than anchor texts and therefore po-
tentially less useful. On the other hand, studies such as [BXW+07] report that tags pro-
vide multi-faceted summaries of Web documents. Seen this way, the diversity of tags

17Kendall-τ for tags, anchor words and search keywords were -0.91, -0.78 and -0.96, respectively.
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Figure 4.5: Diversity. Normalized entropy of tags, anchor words and search keywords
in CABS120k08. A value of 0 denotes zero entropy (uniformity), a value of
1 maximum entropy (high diversity).

could be an advantage since it might capture information and meanings that anchor
texts miss.

In summary, these results suggest that folksonomies and collaborative tagging do
provide valuable information but it is very important to separate signal from noise.
A simple way to do so would be applying thresholding techniques (e.g. excluding
such tags that are not exceeding a minimum count) or considering only the Top n tags
[LBY+07, RGMM07, Sim08] – thereby exploiting the power-law patterns observed in
folksonomies to limit the potentially negative effect of the long tail (see Section 2.4.4).
A more sophisticated approach would be, for example, to study the structure and dy-
namics of folksonomies for identifying expert users, thus adding a trust layer on top
of folksonomies and collaborative tagging.18 In Chapter 5, we will investigate such a
notion of expertise or “trustworthiness” of users in folksonomies and propose an algo-
rithm, SPEAR, for ranking users by their expertise.

4.3.7 Similarity

In this section, we study the pairwise relatedness of social bookmarks, anchor texts and
search queries, i.e. how similar each metadata type is to the others, by analyzing the
CABS120k08 data set. We also use categorization information from the Open Directory

18Interestingly, this discussion is related to the analysis of the Web graph for identifying link farms of
spam Web pages [WD05].
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Project as ground truth to investigate how much each metadata type is suited for clas-
sification tasks, thereby extending the related studies in [BXW+07, WZY06, XBCY07].

For similarity analysis, we transformed each metadata record into vector space and
then computed their cosine similarity [DHS01], which is a similarity measure often used
in information retrieval [MRS08]. Cosine similarity measures the similarity of two vec-
tors ~i and ~j by finding the cosine of the angle between them. It is formally defined
as

similarity(~i,~j) :=
~i ·~j∥∥∥~i∥∥∥ ∗ ∥∥∥~j∥∥∥

�� ��4.2

where “·” denotes the dot product of the two vectors, and the denominator is the
product of their Euclidean lengths. Firstly, we preprocessed our experimental data –
tags, anchor words, search keywords and ODP categorizations – as has been done in
related studies such as [PCT06, TG06, XBF+08], namely by splitting terms at special
characters such as “_” or “:”, and by stemming the resulting terms based on Porter’s
stemming algorithm [Por80]. We also removed common English stop words such as
“the” or “of” from the data. For example, the tag new_york would be preprocessed to
the words new and york. After these steps, each word was treated as one dimension
in the vector space for similarity computation. The final results are shown in Table 4.9.

T A S C
T x 0.126 0.126 0.189
A 0.126 x 0.193 0.103
S 0.126 0.193 x 0.102
C 0.189 0.103 0.102 x

Table 4.9: Similarity. Pairwise similarities of tags (T), anchor words (A), search key-
words (S) and categories (C) in CABS120k08. The maximum values for each
column are in bold font.

We observed the highest similarities between tags and categories (0.189) as well as
between anchor words and search keywords (0.193)19. This direct comparison suggests
that tags are better suited for classification tasks whereas anchor words are better for
augmenting Web search20. We will therefore analyze tagging information with regard
to classification tasks in the next section. On the other hand, this result does not neces-
sarily mean that tagging information of folksonomies can principally not be leveraged
to improve Web search. For example, Au Yeung et al. [AGS08a] present an approach

19A statistical test revealed that the similarity means for (A, C) and (S, C) were significantly different for
P<0.05. For (A, T) and (S, T) however, the null hypothesis of having equal means could not be rejected.

20These results also agree with the studies of Heymann et al., who analyzed the similarity between tags
and search keywords in 2008 [HKGM08].
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that exploits folksonomies for Web search disambiguation by classifying Web docu-
ments in search results into different thematic categories. Similarly, we propose a new
approach to personalization of Web search in Chapter 6 that re-ranks search results lists
based on the similarity of user and document profiles derived from folksonomies. We
therefore argue that folksonomies provide information that can still help in the broad
area of Web search, but it is important to understand how their characteristics – for in-
stance, a closer relatedness of user-contributed tags to classification information from
taxonomy experts than to search queries from other end users – can contribute to solv-
ing a given problem.

4.3.8 Classification

We observed in the previous section that tags seem to be better suited for classification
of Web documents than anchor words or search keywords. In this section, we extend
this analysis and study how each metadata type compares with the Web taxonomy
of the Open Directory Project, which is maintained by a global community of expert
editors.

For this experiment, we matched tags, anchor words and search keywords of a docu-
ment in CABS120k08 against its categorization. A document in ODP is categorized by
one or more category hierarchies such as Arts > Crafts > Textiles > Weaving. We ana-
lyzed at which hierarchy depth matches occurred, and normalized the results so that
the top category in a hierarchy, e.g. “arts”, was represented by 0 and the leaf category
by 1, e.g. “weaving”. Additionally, we used the Levenshtein distance [Lev66] to re-
lax the matching conditions in order to detect small variations such as singular-plural
(“dog” vs. “dogs”) or different languages (“music” vs. “músika”) to a certain degree.
The results are shown in Figure 4.6.

Firstly, there were strong negative correlations of category depth with document
popularity for all metadata types: Spearman-r for tags, anchor words and search key-
words were -0.99, -0.84 and -0.99, respectively21. With increasing document popularity,
broader classification scores were achieved. This seems to indicate that popular web-
sites cover rather broad topics whereas less popular websites are rather focused22.

Secondly, tags were used for broader classification than anchor words and search
keywords across all PageRanks: The global average for matches of tags was 0.27 com-
pared to 0.41 and 0.43 for anchor words and search keywords, respectively. Under
relaxed matching conditions, tags score 0.38 compared to 0.47 for both anchor words
and search keywords. This outcome supports the conclusion of the previous section
that tags are better suited for classification purposes than anchor words or search key-
words in the sense that they can better catch the “aboutness” of documents (cf. [GH06,
BXW+07, EM03]). Similarly, our results suggest that for Web information retrieval in
general, tags may help more with broad classification or grouping of documents rather
than finding the specific “needle in the haystack”.

21Kendall-τ for tags, anchor words and search keywords were -0.96, -0.73 and -0.96, respectively.
22For example, among the PR10 Web documents in CABS120k08 were WhiteHouse.gov and NASA.gov,

compared to Web documents such as WomencareShelter.org or LakeGeorgeRestaurants.com for PR3.
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Figure 4.6: Classification. Normalized category depth for matches of tags, anchor
words and search keywords with categories in CABS120k08 (C). A value of
0 denotes a root category (“broad”), a value of 1 a leaf category (“specific”).
The gray line denotes the tag results of DMOZ100k06 (D) for comparison
across our two experimental data sets. Please note that the y-axis is plotted
in reverse so that root categories are at the top in the figure.

Lastly, we conducted a second experiment for analyzing whether tags that are used
for the purpose of classification tend to be particularly popular among users when an-
notating resources on the Web. As such, we contribute to the studies of user motivation
and the functions of tags described in Section 2.4.3. For this experiment, we matched
the tags of a Web document with its ODP categories assigned by expert editors. We
measured the popularity of a tag by its tag count, i.e. how many times the tag was used
to annotate a given document, and normalized the tag count so that the least popular
tag of a document was represented by 0 and the most popular tag by 1. As result of
our experiment, we found that the mean popularities of tags matching a document’s
categories were 0.71 and 0.74 in DMOZ100k06 and CABS120k08, respectively. This
outcome indicates that the use case of classifying Web resources via tags is particularly
popular among users, and that an analysis of tag popularity can help with identifying
those tags that provide the most relevant classification information. It also supports
the notion that the usage patterns of collaborative tagging (see Section 2.4.3) lead to the
emerging classification scheme of folksonomies.

4.4 Discussion and Summary

In this chapter, we have presented our empirical and explorative studies of folksonomies
in the context of Web information retrieval. Our experiments and analyses suggest
that user-contributed data in folksonomies exhibits several unique characteristics when
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compared to other types of data and metadata about Web resources, providing strong
support to our hypothesis that we presented at the beginning of this chapter. Where a
direct comparison is available, our results agree with studies that analyzed the various
data and metadata types in isolation, which we believe is an indication of the soundness
of our experimental setup. Our main findings can be summarized as follows.

• Folksonomies provide large volumes of (meta)data about Web resources and al-
ready cover a considerable fraction of the Web. Users seem to be willing to con-
tribute such metadata readily via collaborative tagging.

• Folksonomies provide new data that is not available through content inspection
or link analysis of Web resources, which includes textual content and metadata
written by their authors. We observed similar results for search queries (by Web
searchers) and anchor texts (by other Web authors). Additionally, our similar-
ity analyses found that the information in folksonomies is different from other
metadata types, which suggests that folksonomies are indeed providing compli-
mentary data for Web information retrieval.

• In general, the data about individual resources in folksonomies is rather diverse.
Techniques for separating “signal from noise” are therefore helpful when lever-
aging folksonomies for Web information retrieval. For starters, even simple tech-
niques such as thresholding may be effective according to our experiments. How-
ever, more sophisticated approaches will yield more satisfying results (cf. Chap-
ter 5).

• The cardinality of posts in folksonomies, search queries and anchor texts are simi-
lar: the average lengths of all three metadata types stayed between two and three
terms. However, we also found that posts in folksonomies are the only metadata
type that shows a positive correlation with resource popularity. In direct compar-
ison, for example, the amount of data per anchor text is larger for less popular
resources, whereas posts in folksonomies provide more data for popular ones.

• Folksonomies seem to be well-suited for classification tasks in Web information
retrieval. Firstly, using tags for classification purposes was very popular among
users. Secondly, tags in folksonomies show a higher similarity with classification
metadata than other metadata types.

With this chapter, we have come to the end of the first part of the thesis, where we
have focused our studies on understanding folksonomies for Web information retrieval.
In the second part of this thesis, we will turn our attention to leveraging folksonomies
and our knowledge of them for enhancing and improving techniques in the domain of
Web information retrieval.
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The value of an idea lies in the
using of it.

Thomas Edison (1847–1931) 5
Expertise Ranking in Folksonomies

The act of sharing information with others is an essential aspect of collaborative tagging
and folksonomies, and also one of the defining characteristics of the Social Web in gen-
eral. On the one hand, tagging allows a user to organize his favorite Web resources. On
the other hand, the collaborative dimension also means that he can share with others
what he has found interesting on the Web, resulting in a new way for users of discov-
ering useful or otherwise interesting resources. We have seen in previous chapters that
tags are helpful for describing what a Web resource is about, and as such they are also
helpful in retrieving relevant resources at a later time.

The two basic ways to navigate and discover resources on collaborative tagging sys-
tems are browsing by tag and by user. For example, a Flickr user might browse the list
of recently posted photos with the tag sunset. He can refine his browsing patterns
by adding further tags to his query for building conjunctions of resource sets such as
“sunset AND portrait”. Similarly, he might follow the list of recently posted re-
sources of a specific user who is known to be a source of high quality resources on a
particular topic. Here, the benefit lies in leveraging other users as human filters for
useful resources on the Web.

With the increasing popularity of folksonomies on the Web, however, the numbers
of users, tags, and documents within collaborative tagging systems increase as well.
The result is that it becomes harder and harder to navigate folksonomies through these
simple means [CM08]. Given a list of resources that have been assigned a particular tag,
it thus becomes desirable to have a reasonable ranking mechanism that allows for more
efficient retrieval of relevant, high quality resources. Similarly, we also need a ranking
mechanism for users – ideally in a topic-sensitive manner – in order to identify reliable
users who we can use as social filters for the kind of information we are interested in. In
other words, such a ranking would allow us to find out which users are best to follow
in a folksonomy and which are best to avoid (spammers), and thereby help to improve
the flow of information within the user community and strengthen social ties.

Developing such ranking schemes for folksonomies is not a trivial task. Firstly, the
differences between folksonomies and the Web graph (see Chapter 2.2) complicate the
adaptation and extension of traditional ranking schemes in Web information retrieval
to folksonomies [MCM+09b]. Secondly, many collaborative tagging systems – partic-
ularly those that enjoy high popularity among users – demand only a minimal set of
requirements from new users joining the system, and often allow anonymous user ac-
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counts where users can act under a pseudonymous username, i.e. the user identity
is neither asked for nor verified. Additionally, the popularity of collaborative tagging
systems makes them an attractive target for spammers who want to promote their own
content on these social platforms (see Section 2.6). For these reasons, we cannot rely on
the user himself for self-assessing his “expertise” or “trustworthiness”. Lastly, focusing
solely on the quantity of user activity is also not recommended [ZD07]. While we have
seen that power-law patterns in folksonomies lead to stabilization, a large number of
highly active users of collaborative tagging systems are in fact spammers [WZB08]. A
ranking approach therefore must favor the “quality” of user activity over its quantity
and be able to differentiate between legitimate users and malicious spammers.

We argue that the assignment of the same tag to a resource at a later time than a
previous user can be considered as an implicit endorsement or consent to the latter’s
tagging activity, particularly the judgement that the tagged resource is indeed interest-
ing or useful with regard to the assigned tag. In this chapter, we describe in detail this
notion of implicit endorsement, investigate how it can be used for developing a scheme
for ranking users, and test our hypothesis regarding user expertise in folksonomies:

Hypothesis 2 (User Expertise):
The expertise or trustworthiness of users in a folksonomy can be derived
from an analysis of their activity and implicit interactions within the folks-
onomy.

5.1 Resource Discovery in Folksonomies

The discovery of Web resources – in particular, those of high quality – is one aspect of
the broad area of Web information retrieval. In the context of folksonomies, we can
differentiate between external and internal resource discovery. In the former case, a user
discovers a resource through means that are external to the folksonomy he participates
in, for example through a search engine or a recommendation sent via email from a
friend. In the latter case, a user discovers a resource from within the folksonomy. This
implies that the resource must have been discovered already by other users in the com-
munity. In general, resources must be externally discovered first before they can be
subsequently discovered internally.

While there is a wide variety of means for external resource discovery, there are only
two basic ways for internal resource discovery in folksonomies as we have described in
the beginning of this chapter: browsing by tag and by user.

Tag-based resource discovery involves obtaining a list of resources that have been as-
signed a particular tag t. Here, the folksonomy F is filtered according to a particular
tag t ∈ T to return a set of resources Rt = {r ∈ R | (u, t, r) ∈ Y}. For example,
users can navigate resources by tag via the user interface of collaborative tagging sys-
tems (see Figure 3.4 in Section 3.1.1). Most of these systems also provide other means
such as news feeds1 which users can subscribe to for receiving a regularly updated list

1There are various technical formats for news feeds such as RSS, ATOM and JSON.
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Figure 5.1: A user’s network on Delicious. The users who are followed by this exem-
plary user (here: Joshua Schachter, the founder of Delicious) are shown in
his network on the right side. On the left side, all public posts of the followed
users are aggregated into a single list of posts that is sorted descendingly by
post creation time, i.e. newest posts are shown first. This allows a user to
conveniently track the tagging activities of other people.

of recently posted resources that have been assigned a particular tag.
User-based resource discovery, on the other hand, involves obtaining a list of resources

through other users of the folksonomy who have expertise in a particular topic. Here,
the folksonomy F is filtered according to a particular user u ∈ U to return a set of
resources Ru = {r ∈ R | (u, t, r) ∈ Y}. On Delicious, for example, one can
“follow” the tagging activities of other users by adding them to one’s personal network
of user contacts as illustrated in Figure 5.1. Whenever a user u adds a new resource r
through a post p to his personomy Pu, any of his followers is notified about p (and thus
r as well) through this network feature. User-based resource discovery is based on the
assumption that a user who has tagged high quality resources relevant to a particular
topic in the past, he will also tag high quality resources in the future. Thus, if we have
identified a user who has expertise in a topic we are interested in, we can simply follow
his tagging activities for receiving high quality Web resources that are relevant to the
topic.

While both methods have their own advantages depending on the specific context,
we believe that user-based resource discovery is more beneficial in general. The main
drawback of tag-based resource discovery is that the list of resources Rt can be very
large. Delicious, for example, lists more than three million resources as of March 2010
for the tag business, i.e. |Rt=business| ∼ 3, 000, 000. Existing collaborative tagging sys-
tems usually provide users only two options for sorting and navigating through these
resource lists, namely by recency based on post time (newly posted resources are dis-
played first) or by popularity based on post frequency (frequently posted resources are
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displayed first). Neither option guarantees that the resources with the highest quality
are presented first, however. User-based resource discovery, on the other hand, lever-
ages expert users as human filters for useful resources on the Web, i.e. users who are
good at both internal and external discovery of high quality resources. The main diffi-
culty of user-based resource discovery, however, lies in the finding of such expert users
in the first place – the user population U of Delicious, for example, has more than five
million users.

In the following sections, we will therefore discuss the notion of user expertise with
regard to a particular topic in the context of folksonomies. We will investigate the
characteristics of expert users, i.e. answering the question of what makes a user an
expert, and how the level of expertise can be measured.

5.2 Expertise in Folksonomies

Before we can identify experts and rank users according to their expertise, we must
first have an idea of the characteristics of an expert. In a general context, an expert is
someone with a high level of knowledge or skills in a particular domain. It implies
that experts are individuals that we can treat as reliable sources of information and
resources that contain such information. This general idea can be readily applied to
the context of folksonomies and collaborative tagging. In this section, we describe and
justify our two assumptions for experts in folksonomies.

5.2.1 User Expertise and Document Quality

Arguably, the simplest way to assess the expertise of a user in a given topic is by the
number of documents he has assigned a certain tag (or set of tags) representing the
topic. This approach is commonly used by existing collaborative tagging systems.
For example, on any page that is dedicated to a particular tag, LibraryThing (see Sec-
tion 2.1.2) presents a list of the Top users of that tag. However, such an approach does
not consider the obvious fact that quantity does not imply quality2. Similar to the dif-
ferences in the number and quality between the submitted papers and the eventually
accepted papers of an academic conference, knowing a lot of Web documents about
photography is not the same as knowing high quality documents about photography.
Additionally, an approach that relies solely on the frequency of tagging activities is sus-
ceptible to spamming (see Section 2.6) because spammers who indiscriminately tag
a large number of documents may be mistaken as experts. This vulnerability has
been confirmed in both simulated experiments [KEG+07] and empirical studies of folk-
sonomies [WZB08].

Studies in psychology explain that expertise involves the ability to select the most rel-
evant information for achieving a goal [FPE06]. Experts also have the ability to process

2Anecdotally, the bookmark count of resources posted in the user’s network in Figure 5.1 indeed varies
widely: the lowest post count is 2, the highest is 7120. Assuming that a user is most likely to add such
users to his network that are good at identifying high quality resources, this observation indicates that
lack of quantity does not imply lack of quality.
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and apply new information faster than non-experts [Sal91]. In the context of collab-
orative tagging, users assign tags to resources so as to facilitate retrieval in case the
resources are useful to their information needs. A link between studies in psychology
and collaborative tagging can thus be drawn. We believe that an expert should be some-
one who not only has a large collection of documents annotated with a particular tag,
but should also be someone who tends to add high quality documents to their collec-
tions. Similarly, the quality of documents should in turn be determined by the number
and by the expertise of the users who have added these documents to their collections.
In other words, there is a relationship of mutual reinforcement between the expertise of
a user and the quality of a document: a document which is tagged by important users
becomes important itself, and vice versa for users.

This approach is similar to the idea of the HITS (Hypertext Induced Topic Search) algo-
rithm [Kle98] for the analysis of the hyperlink structure of the Web. HITS is a ranking
algorithm that is based on the intuition that hyperlinks can be viewed as topical en-
dorsements: A hyperlink from a Web document d1 devoted to topic T to another page
d2 is likely to endorse the authority of d2 with respect to topic T. HITS characterizes Web
documents with the two attributes of hubness and authority. A Web document receives
higher hub scores if it points to many other documents (i.e. a large number of outgoing
hyperlinks), and higher authority scores if many other documents point to it (i.e. a large
number of incoming hyperlinks). Here, the relationship of mutual reinforcement is be-
tween the hubness and authority of documents, i.e. the hubness of a Web document
increases with the authority of documents that it points to, and vice versa.

However, there exists a major difference between HITS and our scenario of user ex-
pertise in folksonomies. Collaborative tagging involves two different kinds of interre-
lated entities, namely human users and Web documents, whereas HITS operates only
on Web documents. Additionally, there are only links pointing from users to docu-
ments in folksonomies but not vice versa. Thus in our case users will only receive hub
scores (expertise) whereas documents will only receive authority scores (quality). This,
however, is a very reasonable result: Experts act as hubs because we are likely to find
useful resources through them, whereas high quality documents can be considered as
authorities because they contain the information we need.

5.2.2 Discoverers and Followers

While it is a very intuitive and reasonable method to use a HITS-like mutual reinforce-
ment approach for the simultaneous measuring of the expertise of users and the quality
of documents, we have two concerns about whether it alone is sufficient to yield a good
performance in the context of folksonomies3.

Firstly, in the HITS approach, two users will be considered to have the same level of
expertise even though one is the first to tag a set of documents and the other is simply
tagging the documents because they are already popular in the community. Because
the social aspect of collaborative tagging entices users to actively share information

3Similar concerns about simple adaptations of traditional ranking algorithms to the context of folk-
sonomies are raised by Markines et al. [MCM+09b].
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with others, they are also more likely to learn from each other, particularly in terms
of receiving information from others and spreading it themselves. Mutual reinforce-
ment alone, however, cannot differentiate whether a user is very good at discovering
resources or whether he is only following the examples of other members in the folks-
onomy. Particularly by considering the power laws in folksonomies where a relatively
small set of documents is the focus of attention of the user community, we follow the
argumentation of Markines et al. [MCM+09b] and argue that a simple adaptation of
a traditional Web ranking algorithm such as HITS would therefore not be effective in
the specific context of folksonomies. Secondly, a pure mutual reinforcement scheme
is very vulnerable to spamming activities. Since the expertise of a user increases with
the number of tagged documents, a spammer can exploit this weakness of mutual rein-
forcement and boost his expertise score by tagging lots of popular documents because
these are likely to be of high quality.

Hence, in addition to knowing a lot of high quality documents per se, we believe an
expert to be someone who is also able to recognize the usefulness of a document before
others do [Chi06], thus becoming the first to tag it, and by doing so bringing it to the
attention of other users in the folksonomy. This aspect of expertise is similar to a distin-
guished researcher who not only has profound knowledge of existing publications and
prior art in his area of expertise, but who is also able to advance the field by original
research of his own. In other words, experts should be the discoverers of high qual-
ity documents, in contrast to the followers who find these documents at a later time,
for example because the documents have already become popular in the folksonomy
or because they have been featured in the mass media at some later time. Generally
speaking, the earlier a user has tagged a document, the more credit he should receive
for his tagging activities.

With this assumption, we are introducing temporal information, i.e. the time of tag-
ging a document, as an additional dimension for determining the expertise of a user.
As such, we infer information from when the folksonomy graph changes. While we
can never know how a user discovered a document, e.g. through internal or external
discovery, the time at which the user posted the document is still a reasonable approx-
imation of how sensitive he is to new information with respect to the topic.

Because the temporal information of tagging activities in a folksonomy cannot be
manipulated by its users, there is an added benefit with regard to spam protection. The
notion of discoverers and followers with differing credit scores is related to protection
mechanisms against Sybil attacks [Dou02, YKGF06] in information security. In a Sybil
attack, a malicious user creates multiple user identities in order to boost his reputation
or “trust score” within a system such as a peer-to-peer network. However, an attacker
can create many identities but only few trust relationships, particularly with partic-
ipants outside his fake user network. This aspect can be exploited to identify Sybil
attacks. Similarly, a spammer that floods a collaborative tagging system for boosting
his expertise score will end up being either just a follower (in case he focuses on doc-
uments that are already popular within the user community) or a discoverer without
any followers (in case he introduces his own spam documents to the community that
nobody else cares about). In both cases, he will not benefit much from his malicious
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Figure 5.2: Discoverers and followers: implicit endorsement in folksonomies. In this
example, the tagging timeline of a resource r is shown that has been anno-
tated by three users U1, U2 and U3 with the same tag T1. In such a scenario,
the tag assignments of users U2 and U3 can be considered as implicit en-
dorsement of the tagging activities of the previous user(s).

activities.
The discoverer-follower scheme can also be considered as an implicit, topical en-

dorsement similar to the intuition behind the HITS algorithm (see discussion above),
albeit in an enhanced scenario due to the additional temporal component of the former.
As illustration, Figure 5.2 shows the tagging history of a document that has been an-
notated with the same tag ti by three users U1, U2 and U3 at different points in time.
When U2 tags the document with the same tag ti as U2 did previously, we argue that
this represents an implicit endorsement on two different levels: On the resource level, U2
agrees with U1 that, firstly, the particular document is a useful resource4 and, secondly,
the document’s annotation with tag ti is reasonable. On the user level, U2 asserts U1 a
certain level of knowledge in the topic that is represented by ti because U1 was correct
in selecting ti for describing the document from the viewpoint of U2. This notion of
implicit endorsement is also transitive, i.e. the tag assignment of U3 endorses the tag-
ging activities of both U1 and U2 with respect to the two levels described above. As
more and more users tag the resource in the same way, we are increasingly assured of
the tagging activities of the early users in the document’s timeline and their expertise
with regard to the respective topic. As such, the earlier a user appears in the timeline
of a document and the more implicit endorsement he subsequently receives from other
users, the more credit he should receive for discovering the document with regard to
the topic5. On the opposite end, when a user does not receive such implicit endorse-

4This notion follows the argumentation and findings of Abrams et al. [ABC98] for the general case of
bookmarking a Web document.

5This concept of implicit endorsement in the context of folksonomies bears resemblance to the work of
Xu et al. [XFMS06]. They propose a measure against tag spam by introducing a reputation score for
each user. This score measures how well each user has tagged in the past, which can be modeled as a
voting problem: Each time a user votes “correctly”, i.e. he tags consistent with the majority of other
users, the user receives a higher reputation score.
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ment from others, it means that either his selected tag does not describe the document
well enough (indicating a lack of expertise of the user with regard to the topic repre-
sented by the tag) or that the document is not particularly useful or topically relevant
to the rest of the user community.

In summary, we believe that the discoverer-follower assumption is both reasonable
and desirable because experts should be the ones who bring good documents to the
attention of novices. In addition, this also makes our method of ranking expertise more
resistant to spamming activities as mentioned above.

5.3 Spamming-resistant Expertise Analysis and Ranking

Based on the assumptions about user expertise in folksonomies described in the previ-
ous sections, we propose SPEAR (Spamming-resistant Expertise Analysis and Ranking) as
an algorithm to produce a ranking of users with respect to a set of one or more tags.
Without loss of generality, we assume that the topic of interest is represented by a tag
t ∈ T . We therefore focus on users who have used tag t for annotations, and docu-
ments (resources) to which tag t has been assigned. As we also take into consideration
the time at which a tag assignment is created, we extend the notion of tagging by as-
sociating a timestamp to each tag assignment (cf. the extended folksonomy definition
2.2-2 in Section 2.2). Hence, every tag assignment y ∈ Y becomes a tuple of the form
y = (u, t, d, c), where c is the time when user u assigned the tag t to document d, and
c1 < c2 if c1 refers to an earlier time than c2. The restriction of Y to t is then used as the
topic-sensitive input data of the algorithm, i.e. Yt = {y ∈ Y | t ∈ (u, t, d, c)}.

Since our algorithm is based on the HITS algorithm [Kle98], we first give a brief in-
troduction of this algorithm before describing in detail our proposed SPEAR algorithm.

5.3.1 The HITS Algorithm

The HITS algorithm performs link analysis in order to produce a ranking of Web doc-
uments. As we have mentioned above, it is based on the intuition that hyperlinks can
be viewed as topical endorsements: A link from a Web document d1 devoted to topic
T to another document d2 is likely to endorse the authority of d2 with respect to topic T
[NZT07]. HITS measures two characteristics of documents, namely authority and hub-
ness. Authoritative documents are those that provide good information with respect
to a chosen topic, while hubs are documents that point to good authorities. A detailed
comparative analysis of HITS is given in [BRRT05].

According to the assumptions of the algorithm, these two characteristics have a mu-
tual reinforcement relationship: a document has high authority if many documents
pointing to it have high hubness, and a document has high hubness if it points to many
documents with high authority. Mathematically, the authority a(d) and hubness h(d)
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of a document d can be defined as follows:

a(d) ← ∑
d′∈P(d)

h(d′)
�� ��5.1

h(d) ← ∑
d′∈G(d)

a(d′)
�� ��5.2

where P(d) is the set of documents with a link to d, and G(d) is the set of documents
pointed to by d.

The above operations can be represented using linear algebra. Let~a be an n-dimensional
vector of authority weights and~h be another n-dimensional vector of hubness weights
for n documents. In addition, let A be an n× n square matrix, where

Ai,j :=

{
1, if document di links to document dj

0, else

�� ��5.3

Then, the algorithm at the k-th iteration can be represented by the following equa-
tions:

~ak = αkAT~hk−1

�� ��5.4
~hk = βkA~ak−1

�� ��5.5

where αk and βk are normalization constants.
The authority and hubness vectors can be proved to converge. By solving the above

two equations, we have the following equations after k iterations:

~ak = θk(ATA)k−1AT1
�� ��5.6

~hk = ψk(AAT)k1
�� ��5.7

where θk and ψk are normalization constants. Since (ATA) and (AAT) are symmet-
ric, we can obtain for each of the matrices a set of eigenvalues with full eigenspaces.
According to theories in linear algebra, ~h would converge to the principle eigenvec-
tor (corresponding to the largest eigenvalue) of the matrix (AAT), and a similar case
applies to~a. It is found that these two vectors converge quite rapidly in practice.

5.3.2 The SPEAR Algorithm

We now describe our proposed algorithm, SPEAR, for ranking users in a collaborative
tagging system by taking into account the two assumptions of experts mentioned in
Section 5.2.

Our first assumption of experts involves the level of expertise of the users and the
quality of the documents mutually reinforcing each other. We define ~E as a vector of
expertise scores of users: ~E = (e1, e2, ..., eM), where M = |Ut| is the number of unique
users in Yt. In addition, we define ~Q as a vector of quality scores of documents: ~Q =
(q1, q2, ..., qN), where N = |Rt| is the number of unique documents in Yt. ~E and ~Q are
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initialized by setting every element to 1. Basically, the exact value of the elements can
be arbitrary as long as they are all equal, because the vectors will be normalized in later
operations.

Mutual reinforcement refers to the idea that the expertise score of a user depends
on the quality scores of the documents which he annotated with tag t, and the quality
score of a document depends on the expertise score of the users who assign tag t to it.
We prepare an adjacency matrix A of size M× N, where:

Ai,j :=

{
1, if user i has assigned tag t to document j
0, else

�� ��5.8

Based on this matrix, the calculation of expertise and quality scores is an iterative
process similar to that of the HITS algorithm:

~Ek = αkAT ~Qk−1

�� ��5.9
~Qk = βkA~Ek−1

�� ��5.10

To implement the idea of discoverers and followers, we prepare the adjacency matrix
A in a way different from the above method of assigning either 0 or 1 to its components.
Before the iterative process we use the following equation to populate the adjacency
matrix A:

Ai,j = |{u|(u, t, dj, c), (ui, t, dj, ci) ∈ Rt ∧ ci < c}|+ 1
�� ��5.11

According to equation 5.11, the component Ai,j is equal to 1 plus the number of users
who have assigned tag t to document dj after user ui. Hence, if ui is the first to assign
t to dj, Ai,j will be equal to the total number of users who have assigned t to dj. If ui
is the most recent user to assign t to dj, Ai,j will be equal to 1. The effect of such an
initialization of matrix A is that we have a sorted timeline of any users who tagged a
given document dj.

The last step is to assign proper credit scores to users by applying a credit scoring
function C to A:

Ai,j = C(Ai,j)
�� ��5.12

A first idea would be a linear credit score assignment such as C(x) := x. In this
way, when the expertise scores are calculated by the iterative algorithm, users who
tagged a document earlier will claim more of its quality score than those who tagged the
document at a later time. One concern of such a linear credit score assignment is that
the discoverers of a popular document will receive a comparatively higher expertise
score even though they might have not contributed any other documents thereafter.

We believe that one criterion of a proper credit scoring function C is that it should
be an increasing function with a decreasing first derivative: C′(x) > 0 and C′′(x) ≤ 0.
In other words, the function should retain the ordering of the scores in A so that dis-
coverers still score higher than followers but it should reduce the differences between
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(a) (b)

D1 D2 D3
U1 1.4 1.7 0.0
U2 1.0 1.4 0.0
U3 0.0 1.0 1.4
U4 0.0 0.0 1.0

(c)

Rank Score
U1 1 0.422
U2 2 0.328
U3 3 0.212
U4 4 0.038

Table 5.1: A simple example of using SPEAR to rank users in a folksonomy. (a) shows
the bipartite graph of four users and three documents. An arrow from a user
to a document represents the fact that the user has assigned the tag concerned
to the document. The numbers in circles represent the order of assigning the
tag to the document. (b) shows the adjacency matrix after the credit score
function is applied. Finally, (c) shows the final ranking of the users. In this
example, U1 is the discoverer of two popular documents (D1 and D2), there-
fore U1 is ranked first. U4 is a mere follower of a single document (D3), and
so U4 is ranked last.

scores which are too high. This is because it is undesirable to give high expertise scores
to users who happened to be the first few to tag a very popular document but have
not contributed any other high quality documents thereafter. Here, we conduct our
experiments with C(x) := x0.5 =

√
x. Overall, the above procedures of generating

an adjacency matrix for the operation of SPEAR from the tagging data given a certain
credit score function can be represented by the following function:

A = GenerateAdjacencyMatrix(Rt, C)
�� ��5.13

The final SPEAR algorithm is shown in pseudocode in Algorithm 1, while Table 5.1
presents an example of running SPEAR on a simple case.

The SPEAR algorithm is different from the HITS algorithm in two aspects. Firstly, the
adjacency matrix is not a square matrix. This is because, instead of considering a single
set of documents, we consider a set of users and a set of documents, and the number
of users is not necessarily equal to the number of documents under consideration. Sec-
ondly, instead of having only the values 0 or 1 for the components in the adjacency
matrix A, we initialize the matrix with different values depending on when the docu-
ments were tagged by the users. However, SPEAR can be proved to converge in the
same way as HITS. This is because the proof involves the eigenvectors of the matrices
(ATA) and (AAT), instead of A [FLM+06]. Also, the proof is independent of the values
in the components of A, as long as A is non-negative, which is also true in the case of
SPEAR. Hence, SPEAR is guaranteed to converge6 under the same conditions as HITS.

6In our experiments, the values in the vectors stabilized on average after 160 iterations.
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Algorithm 1 SPEAR: Spamming-resistant Expertise Analysis and Ranking
Input: Number of Users M
Input: Number of Documents N
Input: A set of tag assignments Yt = {(u, t, d, c)}
Input: Credit scoring function C
Input: Number of iterations k
Output: A ranked list L of users.

1: Set ~E to be the vector (1, 1, ..., 1) ∈ QM

2: Set ~Q to be the vector (1, 1, ..., 1) ∈ QN

3: A← GenerateAdjacencyMatrix(Rt, C)
4: for i = 1 to k do
5: ~E← ~Q×AT

6: ~Q← ~E×A
7: Normalize ~E
8: Normalize ~Q
9: end for

10: L← Sort users by their expertise score in ~E
11: return L

5.4 Experimental Setup

5.4.1 Methodology

It is not a trivial task to investigate and evaluate the performance of SPEAR. The rea-
son is the lack of a proper ground truth for user expertise in folksonomies to compare
experimental results with. Firstly, there exists no standard data set for the evaluation
user ranking on Delicious at the time of writing. Secondly, a manual examination of
user accounts would only be possible for a limited volume of experimental data, i.e.
small sets of users and documents, and thus might result in an evaluation that is not
representative or objective. For this reason, we adopt the experimental setup of stud-
ies such as [CLW08] and [KEG+07]: We combine real-world data and simulated data
to evaluate and compare the behavior and performance of SPEAR with baseline algo-
rithms. Additionally, we augment these experiments with some qualitative studies to
verify our results.

Our methodology can be described as follows. Firstly, real-world data is used as the
base input for our experiments. Here, it is important to realize that with regard to user
data, “real users” means “user accounts derived from real-world data”, which may
include real human users as well as real automated spam bots and other phenomena
found in the wild. We then insert controlled, simulated data into the original real-world
data at the proper places. The behavior of simulated users – and thus the places where
their activities are inserted to – is determined by a) the results of recent studies of collab-
orative tagging systems such as [KEG+07, KFG+07, HKGM07, WZB08, KSHS08] and b)
the characteristics of our real-world data sets. The former ensures that simulated users

100



5.4. EXPERIMENTAL SETUP

Figure 5.3: Effects of simulation parameters P1-P4. The simulation parameters control
where and how the adjacency matrix A, which is initialized with real-world
data, is updated and augmented through simulated data. In A, users and
documents are represented as rows and columns, respectively.

show the expected type of behavior, whereas the latter ensures that we can properly
setup the intensity or magnitude of their behavior according to our real-world data sets.
This approach of combing real-world and simulated data allows us to mitigate the lack
of a proper ground truth by embedding controlled data into a real-world scenario, and
analyze how the expected results compare to the experimental outcomes.

With regard to real-world data, we created and used the large SPEAR collection of
folksonomy data described in Section 3.2.3. To recall, this collection consists of 110 tag-
based data sets that comprise a wide variety of topics derived from 110 seed tags such
as film, geography, history and opera. These data sets contain a total of more
than 1 million users, 15 million bookmarks, 50 million tag assignments and 130,000 Web
documents. As such, the collection allows us to study how consistent the performance
of SPEAR is across different documents and users in a folksonomy.

With regard to the simulation, it is performed by manipulating and updating the
adjacency matrix A, which is initially set up from real-world data. The simulation is
controlled with four parameters that are described in Section 5.4.4, and allows for a
probabilistic setup to make the experiments more realistic. These parameters control
where and how the adjacency matrix A is updated and augmented through simulated
data. The big picture is shown in Figure 5.3. The insertion of simulated data is mainly
carried out by injecting virtual bookmarks into the real-world data at the proper places.
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User Type Variants
Experts Geek

Veteran
Newcomer

Spammers Flooder
Promoter
Trojan

Table 5.2: The simulated user profiles created for the evaluation of SPEAR.

For example, a discoverer-type user would be simulated by inserting a virtual book-
mark early in the timeline of document’s “real” bookmarking history, i.e. updating the
respective column A∗,j. All users with a later bookmark would automatically become
followers of the simulated user for this document. Similarly, we would have to insert
virtual bookmarks to popular documents in order to simulate experts because these
users tend to tag only relevant information.

In our experiments, we construct two different types of simulated user profiles: ex-
pert-like users and spammer-like users. For each type of these users, we model three
variants in order to better match real-world scenarios and to improve the evaluation
setup. An overview of simulated user profiles is shown in Table 5.2. They are described
in detail in Sections 5.4.2 and 5.4.3. It should be noted that due to the probabilistic setup
of our experiments even identical user profiles would produce variations in simulated
data (see Section 5.4.4 below). On the one hand, this means that even two users with the
same profile would behave differently up to a certain extent (there can be some geeks
who are “better” geeks than the others). On the other hand, we can expect overlaps
in user behavior and experimental results between different user variants (a “good”
newcomer might receive a higher expertise score than a “bad” veteran).

5.4.2 Simulated Experts

Simulated expert profiles are subdivided into geeks, veterans, and newcomers. They
represent expert users with different levels of expertise with regard to a particular topic.

A veteran is a user who bookmarks significantly more documents than the aver-
age user, following the reports of user behavior on Delicious described in [HKGM08,
NM07a]. He tends to be among the first users to tag documents which usually become
quite popular within the community. Hence, he is a discoverer with many followers.
In the real-world, a veteran could be compared to an experienced researcher who has
profound knowledge of his area of expertise, and advances the field by publications of
his own.

A newcomer is an upcoming expert who is only sometimes among the first to “dis-
cover” a document. Most of the time, the documents are already quite well-known
within the community at the time he tags them. In the real-world, a newcomer could
be compared to a PhD student who already has knowledge about the state of the art in
his area of expertise, but has yet to gain his reputation within the scientific community.
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He has just started with his own original research, so the number of publications is still
low.

A geek is similar to a veteran but has significantly more bookmarks than a veteran. In
the real-world, he could be a very distinguished researcher with the best knowledge of
his area of expertise and a significant number of own publications. We can consider the
geek profile as the “best” expert within our simulation.

In the experiments, geeks should generally be ranked higher than veterans, and the
latter should in turn rank higher than newcomers. It should be noted that the differ-
ences – or the “gap” – between geeks and veterans are more subtle compared to those
between veterans and newcomers. While geeks generally have higher chances to tag
high quality documents, the probabilistic setup of our experiments plus the notion of
document quality make it possible that some veterans may achieve a higher expertise
score than some geeks.

5.4.3 Simulated Spammers

Simulated spammer profiles are subdivided into flooders, promoters, and trojans. They
represent different types of spammers found in the wild. While these spammers em-
ploy different strategies to achieve their goals, their common objective is to artificially
boost their reputation in the folksonomy and promote their own documents, which are
not likely to be of interest to legitimate users.

A flooder tags a huge number of documents which already exist in the system, most
likely in an automated way. This spammer variant can often be found in the wild
[WZB08, KEG+07, KFG+07]. He tends to be one of the last users in the bookmarking
timeline7. Additionally, he tends to tag documents already known to the community
rather than tagging new documents because he aims at gaining “reputation” through
lots of bookmarks of existing, popular content.

A promoter is a spammer who focuses on tagging his own documents to promote
their popularity, and does not care much for other documents. He tends to be the
first to bookmark documents which attract few followers if any. This spammer type is
quite common and we could find several on Delicious during our experiments. There
were cooperating groups of them who had sequentially named user accounts of the
form iSpamYou001, iSpamYou002, etc. who were possibly trying to perform a Sybil-type
attack as discussed in Section 5.2.2. Such promoter-type spammers have recently been
reported: Wetzker et al. [WZB08] found that 19 of the top 20 most active Delicious
users in their experimental data set were spammers who bookmarked ten thousands of
URLs pointing to only few Web domains. In total, these 19 spammers alone accounted
for 1.3 million bookmarks or around 1% of their data corpus. Likewise, Krause et al.
[KSHS08] observed spammers registering several accounts and publishing the same

7This spammer behavior is not only caused by specific spamming strategies that try to boost exper-
tise/reputation scores by spamming popular documents. In practice, such behavior can also be the
result of the spam bot being created by its masters long after the Delicious service went online in 2003,
so regular users have had a head start. Back in 2003, the eventual success of Delicious was not foresee-
able, meaning that spamming it right away was not worth the risk and effort.
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bookmark several times in a coordinated “attack”. Similar to our anecdotal findings,
[KSHS08] also observed that the number of digits in a username is an indication of
“spamminess”, i.e. the more digits, the more likely the user is a spammer.

A trojan is a more sophisticated spammer in the way that his strategy is to mimic
regular users in the majority of his tagging activities, thus sharing some traits with
so-called shilling attacks in recommender systems [SZC05, CNZ05] and slow-poisoning
attacks [YSR+06, HPS08]. A trojan disguises his malicious intents by tagging already
popular pages, but at some point he adds links to his own documents which can be
malware-infected or phishing Web pages. In other words, this spammer follows the
“majority” opinion in the folksonomy most of the time to avoid detection. He tries to
trick users into believing he is a knowledgeable, benevolent member of the commu-
nity and then lures them into a trap – like a wolf in sheep’s clothing. A recent study
by [MC08] discusses trojan-like spammers in the context of collaborative systems for
reporting phishing Web sites.

As flooders and promoters can already be observed in existing collaborative tagging
systems, an algorithm for telling experts from spammers should therefore be able to
handle such spammer types. Trojan-type spammers could be seen as the next step in
the evolution of malicious spamming techniques. For this reason, we are interested in
finding out how well SPEAR performs on these sneaky and potentially more harmful
spammers.

5.4.4 Simulation Parameters

We control our simulation with four parameters that we use to model the simulated
users and their tagging behavior.

• P1: Number of a user’s bookmarks. For example, geeks and flooders would have a
greater number of bookmarks than veterans or promoters, respectively.

• P2: Newness – Percentage of bookmarks of such documents that are not in the
original real-world data. To make our experiments more realistic, we needed a
feature which allowed simulated users to bookmark completely new documents,
i.e. documents that hadn’t been bookmarked by any real-world user yet. For
example, trojans and promoters create links to their own Web documents. The
actual URLs of such “new” documents were irrelevant in our experiments as long
as they were unique.

• P3: Document rank preferences – A probability mass function (PMF) which specifies
whether rather popular or rather unpopular documents tend to be selected when
inserting simulated bookmarks. For example, the PMFs of veterans and trojans
tend to select popular documents whereas the PMFs of flooders are more evenly
distributed.

• P4: Time preferences – A probability mass function (PMF) which specifies where
in the original timeline a simulated bookmark tends to be inserted into a given
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Type P1 P2 P3 P4
Geek 2 ∗ P1Veteran 0.10 See figure 5.4(a) See figure 5.4(b)
Veteran {0.01, 0.02, ..., 0.05} ∗ nd 0.10 See figure 5.4(a) See figure 5.4(b)
Newcomer P1Veteran 0.10 See figure 5.4(a) EQUAL()
Flooder {0.02, 0.04, ..., 0.20} ∗ nd 0.05 EQUAL() See figure 5.4(b)
Promoter {10, 20, ..., 100} 0.95 EQUAL() See figure 5.4(b)
Trojan {10, 20, ..., 100} 0.10 See figure 5.4(a) See figure 5.4(b)

Table 5.3: Configuration of parameters P1-P4 for simulated user profiles. nd is the
total number of bookmarked documents in the relevant data set. EQUAL()
means that each document rank or time is selected with equal probability.
The sequence of numbers in curly brackets denote multiple experiment runs
with varying parameters as indicated.

document’s bookmarking history. For example, the PMFs of veterans tend to
focus on the early stages of the bookmarking history, newcomers are rather evenly
distributed, and flooders tend to be very late.

The actual configurations of the simulation parameters for each user type are shown
in Table 5.3 (see also Figure 5.4 for the probability mass functions for P3 and P4). Note
that the number of bookmarks for promoters and trojans is set to absolute values (from
10 to 100), unlike that for flooders. Our reason for this decision is that promoters and
trojans should exhibit behavior similar to that of real users (flooders are more likely to
be bots that generate bookmarks automatically). The mean number of bookmarks of
real users in our data set was µmax = 69, therefore our chosen values covered a similar
range.

5.4.5 Evaluation Baselines

In order to have a baseline for our evaluation, we compare SPEAR with two related
algorithms. The first algorithm, FREQ, is a simple frequency count ranking algorithm,
and as such it relies solely on a quantitative analysis of tagging activities for ranking
users. We use it for two main reasons: On the one hand, it represents the naive, in-
tuitive approach to rank users in folksonomies – the more a user engages in tagging
activities, the higher his expertise. On the other hand, this approach is commonly used
by existing collaborative tagging systems. Hence, we consider the FREQ algorithm as a
general baseline for our experiments8, and also as the “empirical” baseline with regard
to folksonomies in practice.

The second algorithm is the original HITS algorithm, albeit slightly adapted to oper-
ate on the data model of folksonomies. We choose HITS because it employs a mutual

8Another popular baseline variant in such experiments is the random algorithm, which would simply
rank users at random. However, we argue that a comparison of SPEAR with the random algorithm
would not yield a lot of insights into its performance.
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Type P1 P2 P3 P4
Geek 2 ∗ P1V eteran 0.10 See figure 5.2(a) See figure 5.2(b)
Veteran {0.01, 0.02, ..., 0.05} × nd 0.10 See figure 5.2(a) See figure 5.2(b)
Newcomer P1V eteran 0.10 See figure 5.2(a) EQUAL()
Flooder {0.02, 0.04, ..., 0.20} × nd 0.05 EQUAL() See figure 5.2(b)
Promoter {10, 20, ..., 100} 0.95 EQUAL() See figure 5.2(b)
Trojan {10, 20, ..., 100} 0.10 See figure 5.2(a) See figure 5.2(b)

Table 5.3: Configuration of parameters P1-P4 for simulated user profiles. nd is
the total number of bookmarked documents in the relevant data set. EQUAL()
means that each document rank or time is selected with equal probability. The
sequences of numbers in curly brackets denote multiple experiments run with

varying parameters as indicated.
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Figure 5.2: (a) PMF for document rank preferences (P3) for geeks, veter-
ans, newcomers and trojans. Flooders and promoters chose document ranks
randomly. Lower bucket numbers refer to higher quality documents. We chose
exponentially increasing bucket sizes to account for the power law characteristics
of folksonomies. (b) PMF for time preferences (P4) for geeks, veterans (black)
and flooders, promoters, trojans (gray). Lower bucket numbers refer to ear-
lier timestamps. In contrast to these user types, newcomers chose timestamps

randomly.
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Hence, HITS does not consider any temporal information in the data sets. HITS
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Figure 5.2: (a) PMF for document rank preferences (P3) for geeks, veter-
ans, newcomers and trojans. Flooders and promoters chose document ranks
randomly. Lower bucket numbers refer to higher quality documents. We chose
exponentially increasing bucket sizes to account for the power law characteristics
of folksonomies. (b) PMF for time preferences (P4) for geeks, veterans (black)
and flooders, promoters, trojans (gray). Lower bucket numbers refer to ear-
lier timestamps. In contrast to these user types, newcomers chose timestamps

randomly.

5.4.2 Results and Analyses

For each of the data sets, we use SPEAR to rank both real-world users and sim-

ulated users, and compare its behaviour and performance with two other baseline

algorithms. The first baseline algorithm is the original HITS algorithm. It is dif-

ferent from SPEAR in the initialisation of the adjacency matrix. No credit score

function is applied, and each cell in the adjacency matrix either equals to 0 or 1.

Hence, HITS does not consider any temporal information in the data sets. HITS

would also behave similarly to other ranking algorithms for folksonomies that are
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Figure 5.4: PMF for document rank preferences (P3) and time preferences (P4).
(a) PMF of document rank preferences (P3) for geeks, veterans, newcom-
ers and trojans. Flooders and promoters choose document ranks randomly.
Lower bucket numbers refer to higher quality documents. We chose expo-
nentially increasing bucket sizes here to account for power law patterns in
folksonomies.
(b) PMF of time preferences (P4) for geeks, veterans (black) and flooders,
promoters, trojans (gray). Lower bucket numbers refer to earlier times-
tamps, e.g. the first bucket represents the first 20% of bookmarks in a URL’s
history. Newcomers choose timestamps randomly.

reinforcement scheme as SPEAR does, although it lacks the latter’s notion of discov-
erers and followers. More precisely, it differs from SPEAR in the initialization of the
adjacency matrix: HITS is a special case of SPEAR when the credit scoring function
C(x) is constant, namely C(x) = 1. Another reason for using HITS as the second base-
line of our experiments is that mutual reinforcement is a characteristic of several other
ranking approaches in Web information retrieval. Notable examples are the PageRank
algorithm [BP98] and its folksonomy-adaptations FolkRank [HJSS06c, HJSS06d], Exper-
tRank [JS06] and SocialPageRank [BXW+07]. Similarly, a direct adaptation of HITS to
folksonomies, SocialHITS9, is proposed by Abel [ABB+09]. Hence, using the HITS al-
gorithm as a baseline also allows us to compare SPEAR with this class of ranking algo-
rithms whose essential element is a mutual reinforcement scheme.

A conceptual comparison of the three algorithms SPEAR, HITS and FREQ is shown
in Table 5.4. In particular, we can see that SPEAR has a greater level of detail compared
to the baseline algorithms: While FREQ is a simple global aggregation (“How much

9The SocialHITS algorithm was published several weeks after we proposed SPEAR in [ANG+09]. Apart
from the lack of a folksonomy-specific component such as the discoverer-follower scheme we use in
SPEAR, the evaluation of SocialHITS described in [ABB+09] was conducted on a significantly smaller
experimental data set. Abel’s data set contained only |U | = 450 users (“mainly from the research com-
munity in computer science”) who bookmarked a total of |R| = 2, 189 Web documents and provided
|Y| = 3, 190 tag assignments.
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does a user engage in tagging activities?”) and HITS analyzes the folksonomy graph
only down to the resource level (“On which resources does a user focus his tagging ac-
tivities?”), SPEAR also analyzes the tagging activities of users for individual resources
(“How does a user compare to others who tag the same resources?”). This improved
granularity should help SPEAR with differentiating the expertise of users, most no-
tably preventing SPEAR from assigning multiple users the same expertise score (which
we particularly expect to happen for the simple frequency count ranking of FREQ).

FREQ HITS SPEAR
Quantity analysis yes yes yes
Quality analysis no yes* yes*
Level of detail global global global

↓ ↓
resource resource

↓
user activity
per resource

*via mutual reinforcement

Table 5.4: Conceptual comparison of FREQ, HITS and SPEAR.

5.5 Experimental Results

We start our discussion of the experimental results with a description and comparison
of the general behavior of the three algorithms SPEAR, HITS and FREQ. We continue
with a detailed description of how different types of expert users and spammers are
ranked by these algorithms, including both quantitative and qualitative analyses.

5.5.1 General Behavior

Figure 5.5 shows the normalized expertise score distributions of SPEAR, HITS and
FREQ for two exemplary data sets, namely ajax and economics. We observed that
SPEAR generally produced more differentiated values than HITS and FREQ for top
users, i.e. the difference in expertise scores between two ranks for SPEAR was gener-
ally larger than for HITS and FREQ, where the curves were flatter. We will see how
SPEAR benefits from this characteristic in Section 5.5.3.

Another observation was the staircase-like shape of FREQ caused by the integer fre-
quency counts on which it is based. This means FREQ tends to group users into buckets
of equal expertise score instead of assigning an individual rank to each user, i.e. many
users share the same rank. While SPEAR and HITS also show occasional staircase steps,
they result from different reasons.

In HITS, users who have assigned the same tag to the same set of documents will be
assigned the same rank. This is because their expertise score is derived from the quality
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Figure 5.5: Normalized expertise scores of the Top 5000 users as returned by SPEAR,
HITS and FREQ for the two exemplary data sets ajax and economics.

of the documents they tag, and if they happen to tag the same documents they will also
receive the same expertise score. In other words, this behavior is caused by the level
of detail (see Table 5.4) of the algorithm: Since HITS can only analyze folksonomy data
down to the resource level, it cannot differentiate users who tag the same document.
Our experiments show that this lack of detail is actually relevant in practice because we
can observe many such cases in our data.

In SPEAR, the observed staircase steps are the result of a limitation of our real-world
data sets. We can only retrieve the date of a social bookmark from Delicious but not its
time of day (cf. Section 3.1.1), resulting in what we call “time collisions” of users how
tag the same document at the same day. Even though SPEAR in theory would be able
to differentiate these users properly, the limited granularity of our data sets with regard
to the timelines of documents causes SPEAR to assign the same expertise score to users
affected by such time collisions. For these reasons, it is not a deficiency of our proposed
algorithm, and the problem can be readily solved with more fine-grained data sets.

In summary, SPEAR was able to differentiate the expertise scores of users better than
the baseline algorithms HITS and FREQ. It was better at spreading the expertise scores
across a wider range, and was less likely to assign the same score to two users. We argue
that this is the result of the improved level of details of SPEAR’s analysis of folksonomy
data compared to the baselines.

5.5.2 Promoting Experts

To study how different variants of experts are ranked by SPEAR, we simulated, for
each of the 110 real-world data sets, 20 experts of each type (60 total per data set) and
added them together with their simulated tagging activities to the corresponding data
set. We then applied SPEAR, the original HITS algorithm and FREQ to these data sets
comprising both real-world and simulated users. The results are shown in Figure 5.6.
For a better comparison across data sets, we normalize the rank of simulated users so
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that a user who is assigned the highest expertise score (with integer rank 0 being the
highest absolute rank, i.e. prior to normalization) will receive a normalized rank of
1.0. The normalized rank of 0.0 is assigned to users with the lowest expertise score. It
is expected to observe some overlapping between the three expert variants due to the
PMF-based simulation setup as described in Section 5.4.1.

The plots show some major differences between SPEAR and the baseline algorithms.
In SPEAR, geeks were generally ranked higher than veterans, which in turn were ranked
higher than newcomers. We also observed that geeks and experts did compete for the
top ranks even though geeks won in general. This means that some veterans, although
having had fewer tagged documents than geeks in general, were ranked higher by
SPEAR because they had some documents of higher quality in their personomies Pu.
Another observation was that veterans were ranked higher than newcomers. Similarly,
we could see again that some newcomers were assigned higher ranks than some veter-
ans due to the reasons mentioned above.

On the other hand, the baseline algorithms HITS and FREQ performed not as good
as SPEAR. They did rank geeks higher than veterans and newcomers, but geeks were
also the “easiest” expert variant to be ranked correctly because they have a very large
number of high quality documents in their personomies. This means even the naive
FREQ algorithm should and did perform reasonably for this user variant. However,
both HITS and FREQ failed to differentiate between veterans and newcomers, which
ended up being mixed with each other. This result suggests that only SPEAR succeeded
in distinguishing veterans and newcomers by implementing the notion of discoverers
and followers. In contrast, HITS still tended to return results which were heavily in-
fluenced and biased by the number of documents in a user’s collection, even though
it is also an implementation of a mutual reinforcement scheme. A zoomed view of
the rankings produced by the three algorithms is shown in Figure 5.7 for two selected
tags economics and iphone. We can see that the three expert variants were clearly
separated by SPEAR, whereas the baseline algorithms intermixed veterans with new-
comers.

In summary, we can conclude that in usage scenarios where quantity does not guar-
antee quality — and we believe collaborative tagging is one such scenario — SPEAR is
expected to produce better rankings of users. We argue that this is the result of SPEAR
being better at detecting the subtle differences between different types of users.

5.5.3 Demoting Spammers

We conducted the spammer-related experiments similarly to our expert-related exper-
iments described in the previous section. Here, we generated and added 20 flooders,
promoters and trojans, respectively, for each of the real-world data sets. Additionally,
we also varied the number of documents tagged by each spammer type for evaluating
the algorithms with regard to their sensitivity to the quantity of users’ tagging activ-
ities. Again, we normalized user ranks as described in the previous section for the
presentation of experimental results, which are shown in Figure 5.8.

FREQ showed the weakest performance among the three algorithms. All spammers
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Figure 5.6: Boxplots of mean normalized ranks of simulated experts—newcomers, vet-
erans, geeks—in direct comparison across all data sets for the three algo-
rithms. Rank values of 1.0 and 0.0 represent the top-ranked user (highest
expertise) and the bottom-ranked user (lowest expertise), respectively. The
plots (a), (b) and (c) show the results for P1Veteran = 0.01 ∗ nd, P1Veteran =
0.03 ∗ nd and P1Veteran = 0.05 ∗ nd, respectively. The P1 parameters of geeks
and newcomers change in relation to P1Veteran as shown in Table 5.3.
With regard to the results, some overlapping of simulated experts is ex-
pected due to the experimental setup as described in the text.

were assigned top ranks simply because they tagged large numbers of documents. This
result shows that a simple frequency count ranking algorithm is very vulnerable to
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Figure 5.7: Ranks of simulated experts for two selected tags economics and iphone.
In this figure, the absolute rank value of 0 represents the top-ranked user
(highest expertise), and larger absolute rank values denote lower expertise.
SPEAR clearly distinguishes between the three types of expert users, while
HITS and FREQ tend to mix up veterans and newcomers.

spamming activities in folksonomies. This is true particularly for flooder-type spam-
mers, which unfortunately are often found in today’s collaborative tagging systems
[WZB08]. HITS, on the other hand, performed better than FREQ but was dominated in
all experiments by SPEAR. While HITS was good at demoting promoters, it had prob-
lems to demote flooders with increasing numbers of spam bookmarks, and was weak
in general for handling trojans.

SPEAR showed the best performance among the three algorithms. Firstly, it correctly
demoted both flooders and promoters by assigning them significantly lower ranks than
HITS and FREQ. This result is very encouraging because flooders in particular have a
strong negative impact on collaborative tagging systems by inserting large volumes of
junk data into the technical infrastructure, and because they also pollute the folkson-
omy itself.

Secondly, SPEAR was also able to demote trojans, which use a much more sophisti-
cated spamming scheme than flooders and promoters. While trojans were still ranked
higher than the other two spammer variants, they were rarely ranked higher than
rank #100 by SPEAR across our experimental runs. This positive result is particu-
larly illustrated in Figure 5.9, which shows the detailed result for the two selected tags
economics and iphone. Compared to HITS and FREQ, SPEAR demoted all trojans
from the TOP 200 ranks. Given that in practice the TOP 10 to the TOP 50 experts should
be the ones we are most interested in, SPEAR in its current form already performed
reasonably well in getting rid of all trojans in the relevant rank range.

That being said, the problem with trojans is that it is tricky to demote them without
demoting good users at the same time, because from a pragmatic point of view a trojan
is still a rather good hub of resources. One possible way to tackle trojans would be to
verify whether documents are really legitimate and useful resources prior to visiting
them, and SPEAR can actually support users in this assessment by computing a quality
score of documents.
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Figure 5.8: Boxplots of mean normalized ranks of simulated spammers – flooders, pro-
moters, trojans – across all data sets for the three algorithms in relation to
the number of bookmarks generated per flooder (x-axis). Rank values of 1.0
and 0.0 represent the top-ranked user (highest expertise) and the bottom-
ranked user (lowest expertise), respectively. Lower values are better.

Lastly, we observed that SPEAR was the only algorithm that did not tend to “clump”
spammers together in one spot in our experiments, i.e. it was better at differentiating
and detecting nuances in spammer behavior compared to HITS and FREQ. We argue
that this is a direct result of the different expertise score curves as described in Sec-
tion 5.5.1.
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Figure 5.9: Ranks of simulated spammers for two selected tags economics and
iphone. In this figure, the absolute rank value of 0 represents the top-
ranked user (highest expertise), and larger absolute rank values denote
lower expertise. (a) and (b) show the full range of user ranks, while (c) and
(d) focus on the Top 2500 user ranks. The figures show that SPEAR could
demote trojans from the Top 200 ranks.

5.5.4 Simultaneous Ranking of Experts and Spammers

In the above experiments, we injected each type of simulated users separately into the
real-world data sets. As an overall evaluation, we conducted a combined evaluation
of expert users and spammers by injecting both types – and thus all six variants – si-
multaneously into the real-world data sets to compare the performance of different
algorithms.

Similar to the experiments described above, we first generated the six different vari-
ants of simulated users using different parameters, and injected their profiles and tag-
ging activities into the real-world data sets. We then used the three algorithms SPEAR,
HITS and FREQ to rank the users. Due to the large number of possible combinations
of parameters, we only report a typical result in detail: Figure 5.10 shows the results
of this experiment with the settings P1Veteran = P1Flooder = 0.03 ∗ nd and P1Promoter =
P1Trojan = 100. With these parameters, the spammers always had larger numbers of
bookmarks than newcomers and veterans, but were comparable to those of the geeks.
Table 5.5 shows the mean normalized rank of each of the different types of users pro-
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duced by the three algorithms.
From Figure 5.10 and Table 5.5, we can see that a combined simulation produces

similar results as the separated simulations described in the previous sections. FREQ
ranked all spammers at the top due to their large collection of bookmarks. HITS was
able to demote the flooders and promoters to a certain extent, but still ranked the trojans
among the Top users. SPEAR showed good performance by demoting the flooders and
promoters more significantly than FREQ and HITS, and by removing the trojans from
the top of the list. It was also the only algorithm which could rank all three expert
types at the top and retain the expected correct order, i.e. geeks before veterans before
newcomers.

N V G F P T
0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 R

a
n
k

FREQ

N V G F P T
0.0

0.2

0.4

0.6

0.8

1.0

HITS

N V G F P T
0.0

0.2

0.4

0.6

0.8

1.0

SPEAR

Figure 5.10: Boxplots of mean normalized ranks of all different types of simulated
users being ranked at the same time. In the figures, N=Newcomers,
V=Veterans, G=Geeks, F=Flooders, P=Promoters, and T=Trojans. Due to
the large number of users in the data sets and the zoom level of the plots,
it is difficult to judge the detailed results of expert users in this figure.

G V N F P T Ranking Order
SPEAR 0.9914 0.9821 0.9774 0.7687 0.1656 0.9707 G > V > N > T > F > P
HITS 0.9943 0.9838 0.9842 0.9322 0.2286 0.9874 G > T > N > V > F > P
FREQ 0.9873 0.9731 0.9747 0.9888 0.9797 0.9827 F > G > T > P > N > V

Table 5.5: Summary of the result of overall evaluation with all different types of sim-
ulated users being ranked at the same time. For spammers, the best (lowest)
result is shown in bold font. As can be seen, only SPEAR was able to rank all
three expert types at the top and retain the expected correct order. G=Geeks,
V=Veterans, N=Newcomers, F=Flooders, P=Promoters, and T=Trojans.

5.5.5 Qualitative Analysis

In addition to the quantitative analysis of the simulation results, it is worthwhile to take
a look at the ranking of real users produced by SPEAR in a qualitative way so as to gain
more insight into its effectiveness.
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We ran SPEAR on the data sets of four arbitrarily selected tags, namely photography,
semanticweb, javascript and programming, where the last two are combined to
form a conjunction as an example of running SPEAR on a more specific topic. We exam-
ined the Top users who are given high ranks by SPEAR in each of these data sets. While
it would be difficult to provide an objective evaluation of the expertise of these users,
we discovered that there were several things that were indicative of their expertise.

Firstly, many of these Top users were more likely to provide optional personal infor-
mation in their Delicious account, including for example their real names, address of
personal Websites, links to their photos on Flickr.com, and links to their Twitter.com
microblogging account. This implied that they were more involved in using Deli-
cious. Secondly, many of them have a lot of other tags used together with the corre-
sponding tag in which they attain high expertise scores. For example, a Top user in
photography has used 359 other tags together with photography, suggesting that
he has an extensive collection of documents about the topic. Finally, we identified some
“real” experts among the Top users. For example, two users who were ranked in the
Top 10 in semanticweb turned out to be two researchers of Semantic Web technolo-
gies, while a third was found to be an active blogger of the same subject. The Top
two experts ranked by SPEAR in javascript ∩ programming were two professional
software developers. In contrast, all the users mentioned above were ranked lower by
FREQ and HITS, sometimes even outside the Top 200.

As for spammers, we singled out the obviously heavily spammed tag in Delicious,
mortgage, collected the bookmarking histories of the documents that were annotated
with the tag10, and run SPEAR, HITS and FREQ on it to rank the users. We wanted to
find out whether spammers were really demoted by SPEAR and whether FREQ was
vulnerable to spammers in this real setting. While we did not have a labeled list of
the spammers as ground truth, we identified them manually by looking for several
characteristics common to spammers. Spammers are usually automated bots. Hence,
they either tend to extract words from the documents themselves (especially the title)
and use them as tags, or use the same set of tags on a large number of documents
even though the tags are not semantically related to the document content [MCM09a].
Also, some spammers aim at promoting their own content, and therefore many of their
bookmarks are likely to be documents from the same domain (which can usually be
classified as spam at first glance).

By looking for these characteristics of users who used the tag mortgage, we suc-
cessfully identified 30 spammers in the 50 most active users. Obviously, this meant that
out of the Top 50 users ranked by FREQ, 30 of them were found to be spammers. It
is interesting that we even discovered a group of spammers whose usernames had the
same prefix and were only different from each other in the numbers in the suffixes, sug-
gesting that there exist spammers who submit spams in a more sophisticated way than
merely flooding the system. As for the rankings produced by SPEAR and HITS, we
observed similar results as we did in our simulations. All these 30 spammers were sig-
nificantly demoted to below the 3000th rank by SPEAR and HITS, with ranks of these

10The data set of the tag mortgage was not among the 110 data sets we had collected in the beginning.
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spammers in SPEAR much lower than those in HITS. We also observed that there were
no spammers in the Top 50 ranks returned by SPEAR and HITS.

In addition, we also run FREQ and SPEAR on arbitrarily selected tags and examined
the differences between the Top rank users. We found that very often users ranked at
the Top by FREQ were quite the opposite of experts, not to mention that many of them
were spammers. For example, for the tag bridge, a user was ranked first by FREQ
because he had a large number of bookmarks with the tag. However, a closer look at
his collection of documents in Delicious revealed that the majority of them were not
related to any conventional meanings of the word ‘bridge’. In contrast, SPEAR ranked
this user much lower, at 2,088th out of the 3,144 users being ranked. The fact that this
user was ranked low by SPEAR was that, despite the number of times he had used this
tag, there were very few if any other users who would do the same thing as he did. In
other words, although he was not necessarily a spammer, this user had few followers
due to his idiosyncratic use of the tag. Arguably, SPEAR gave a more sensible result
because other users were quite unlikely to benefit from this user with respect to the
topic in question.

By this qualitative study, we showed that SPEAR also works reasonably well in a
real setting. On the one hand, it is able to identify real experts. On the other hand, it
is able to solve problems in day-to-day operation of collaborative tagging systems by
demoting real spammers.

5.5.6 Analysis of Credit Score Functions

One important element of SPEAR is the credit score function C(x) by which we assign
higher scores to users who have tagged a document earlier and lower scores to users
who have tagged the document at a later time. This credit score function actually di-
rectly affects the performance of SPEAR. If we do not apply the credit score function,
SPEAR will be no different from the original HITS algorithm, in which every compo-
nent in the adjacency matrix will either be 1 or 0.

Intuitively, with a credit function of larger second derivative11 SPEAR should be
more resistant to spammers. This is because the number of followers of a user is an
important piece of information that allows us to distinguish between spammers from
legitimate users. However, there is also a drawback when such an aggressive credit
score function is used.

To give higher scores to users who have tagged a document at an earlier time will
increase the chance of mistaking an inactive user as an expert. Consider a very popular
document with 5,000 users, a certain user may happen to be the 100th user to tag this
document, and therefore he has 4,900 followers with respect to this document. As a
result, he will be assigned a an initial score of x = 4, 900. Consider two credit score
functions C1(x) = x0.2 and C2(x) = x0.8: C1(x) will return 5.47, while C2(x) will return
895.69. If C2 is used, this user will receive an exceedingly high expertise score given this
high credit score coupled with the probably very high quality scores of this popular

11In this case, credit scores for a user increase faster and faster when he has more and more followers.
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document. Other expert users who have tagged many more high quality documents
will find themselves ranked lower than this user only because they are followers of
him in this particular document. This will be a problem because this inactive user is
very unlikely to benefit other users.

To investigate how the credit score function affects the ranks of these inactive users,
we conducted experiments on some selected data sets with different credit score func-
tions. Firstly, we randomly picked three tags from our data sets: film, history and
iphone. For each of these data sets, we run SPEAR to obtain a ranking of the users in-
volved by using different credit score functions of the form C(x) = xy, where y ranged
from 0 to 1.0 (in the case of y=0, the SPEAR algorithm effectively becomes HITS). While
it is true that there are many other types of functions that can be considered here, this
class of functions should be sufficient in allowing us to have a better understanding of
the behavior of SPEAR, as it provides us with functions with different second deriva-
tives, in which we are most interested. We then examined for each of the tags the ranks
of the users who were found to have only tagged the most popular document in the
respective data set.

Figure 5.11 shows the ranks of users who have only tagged the most popular docu-
ment in each of the three data sets, with SPEAR operating under different settings of
credit score function. We can see that the differences between credit score functions
show similar effects on the ranking of these inactive users. Credit score functions with
greater values of y tend to spread the users across a wider range. This is due to the
fact that these credit score functions assign scores that spread a wider range of values.
However, these functions also tend to rank some inactive users quite high, especially
when they tagged the most popular document at a very early time.

On the other hand, credit score functions with smaller values of y tend to clump
users in small range of ranks. At the extreme end where y = 0, all of the users under
consideration are assigned the same expertise score. A merit of these functions is that
they tend to give lower range to these users on average. Therefore they also have a
smaller chance of mistaking these users as expert users. However, as we have shown in
our simulations, HITS, which is SPEAR with y = 0, performed relatively poorer than
SPEAR where we set y = 0.5. In other words, smaller values of y = 0 would also make
SPEAR more vulnerable to spammers.

Different credit score functions have different merits and weaknesses. Therefore
there is no single correct choice of credit score function for SPEAR. In settings where
spamming activities are commonly observed, functions with greater values of y or other
functions with similar characteristics should be used. On the other hand, in settings
where there are few spammers, one may consider to use functions with smaller values
of y or other functions with similar characteristics.

5.5.7 Excursus: Document Quality in Folksonomies and in the Web

Collaborative tagging systems and folksonomies are not isolated from the rest of the
Web. While we focus our discussion and evaluation of SPEAR on its ability to rank
users according to their expertise, the algorithm also computes a quality score for doc-
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Figure 5.11: Ranks of users who have only tagged the most popular document for
each of the three selected tags film, history and iphone. Only these
users are represented by the circular symbols. Other users in the data sets
are not shown.

uments. This quality score can be very useful for providing a ranking of documents in
folksonomies and also for Web information retrieval in general. As an illustrating ex-
ample, Table 5.6 shows the Top 5 documents returned by SPEAR for the photography
data set. Even at first glance, the list contains documents which appear very relevant
to photography in general, including quite a number of online tutorials on different
aspects of photography. For instance, the first document is a very detailed technical
tutorial of photography describing basic concepts and introducing different shooting
techniques. The fifth document provides a legal summary of photographers’s rights
when stopped or confronted for photography.

We were therefore interested in finding out whether there is a relationship between
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the folksonomy-derived quality scores of documents as returned by SPEAR and the
popularity of these documents on the Web as indicated by their Google PageRank,
which is based on a hyperlink analysis of the Web graph [BP98]. A major difference
between these two scenarios is that rankings derived from folksonomies are based on
the activities of Web readers whereas the rankings derived from the Web’s link structure
is based on the activities of Web authors.

A problem, however, is that the data required for such an analysis is difficult to obtain
in practice. While the volume of our experimental data sets collected from Delicious is
rather large, it is still only a snapshot of its full folksonomy. Similarly, the PageRank
information that may be queried from Google is comparatively coarse. Still, we argue
that our experiments described below can show a general direction of the relationship
between a document’s value in folksonomies and its value in the Web graph.

Top
Rank Web document

1 http://www.berniecode.com/writing/photography/beginners/
2 http://www.diyphotography.net/
3 http://strobist.blogspot.com/2006/07/how-to-diy-10-macro-photo-

studio.html
4 http://digital-photography-school.com/blog/
5 http://www.krages.com/phoright.htm

Table 5.6: Top 5 documents returned by SPEAR for the photography data set.

Firstly, we investigated how the subsets of the highest quality and lowest quality
documents in our data sets compare with the total set of all documents in terms of
Pagerank information. We created two subsets of Web documents for this experiment,
namely SPEAR-TOP and SPEAR-BOTTOM, which contained the Top 100 documents
and Bottom 100 documents, respectively, from each of our 110 real-world data sets. We
discarded 6 out of the 110 data sets because they were comprised of less than 200 doc-
uments. This step yielded a total of 104× 100 = 10, 400 documents for each of SPEAR-
TOP and SPEAR-BOTTOM. Next, we queried the Google search engine for PageRank
information of all Web documents in our real-world data sets, and compared the Page-
Ranks of all documents with those in SPEAR-TOP and SPEAR-BOTTOM. The results
are shown in Figure 5.12 and Table 5.7.

We observed that high quality documents in SPEAR tend to have higher PageRanks
(PR) than a random selection of documents. Similarly, low quality documents in SPEAR
tend to have lower PageRanks. This indicates that there is a kind of correlation between
the folksonomy-based rankings of SPEAR and the hyperlink-based rankings of Page-
Rank. For verification, we computed the Pearson-r correlation coefficient [Ric95] of the
complete (i.e. not only Top and Bottom) document rankings as returned by SPEAR
and PageRank for each real-world data set. The mean Pearson-r correlation coefficient
across all 110 data sets was r̄arithm = +0.324 (σ = 0.146), i.e. a weak positive cor-
relation. The p-values were ≤ 0.05 for all but eight data sets; most of the latter had
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Figure 5.12: Google PageRank distribution for all documents, SPEAR-TOP and SPEAR-
BOTTOM. The plot shows the shifts of high quality documents towards
higher PageRanks, vice versa for low quality documents.

Documents Mean PR Std. Dev. Median PR
All 3.71 1.81 4
SPEAR-TOP 5.05 1.61 5
SPEAR-BOTTOM 3.05 1.81 3

Table 5.7: Google PageRank (PR) statistics for all documents and those in SPEAR-
TOP and SPEAR-BOTTOM, respectively. We observed clear shifts towards
higher PageRanks for documents in SPEAR-TOP and towards lower Page-
Ranks for documents in SPEAR-BOTTOM.

less than 100 documents in total, i.e. the sample size was comparatively small. Under
the assumption that SPEAR is reasonably able to measure the quality of a document
within a folksonomy, this result suggests that there is a correlation between the “value”
of document within a folksonomy – driven by Web readers – and its value within the
hyperlink graph of the Web – driven by Web authors. It is also an indication that the
algorithmic outcome of SPEAR is reasonable in principle.

On the other hand, the rankings of SPEAR are still quite different from PageRank as
is exemplarily shown in Figure 5.13 for the data set entertainment. Here, the Top #1
document for PageRank with Google PageRank value of 10 (PR10) was the well-known
news site CNN.com. However, CNN.com was only ranked #250 by SPEAR, which is
even lower than the highest-ranked PR0 document for SPEAR at #194. Interestingly,
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the latter PR0 document automatically redirected via an HTTP header 301 Moved
Permantently to the home page of The View, a popular ABC talk show, which it-
self has a high PageRank value of PR8. This might be an indication that SPEAR could
identify the value of the document while PageRank failed. However, we must also
consider that the PR0 document in question did not display any content of its own but
rather redirected to another Web document – which might be the reason why Google’s
PageRank implementation assigned it a low PR0 value in the first place.

Overall, only two documents in the Top 20 list of PageRank were present in the Top
20 list of SPEAR. For the record, the Top #1 document for SPEAR was eOnline.com, a
PR7 Web site on entertainment news and celebrity gossip.
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Figure 5.13: Google PageRank distribution from PR0 (lowest) to PR10 (highest) for
the data set entertainment. The solid, staircase-shaped line shows the
PageRank distribution of documents when ranked by their PR value; the
gray circles denote the PageRank distribution of documents when ranked
by their SPEAR quality score. The dashed lines in black and gray show the
least squares regression lines for ranking by PageRank and SPEAR, respec-
tively.

In summary, our findings suggest that there is a correlation between the “value”
of Web documents in folksonomies (driven by Web readers) and its value in the Web
graph (driven by Web authors). However, our results also indicate that folksonomies
can yield information about Web documents through algorithms such as SPEAR that
traditional ranking algorithms cannot derive from an analysis of the Web’s hyperlink
structure.
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5.6 Discussion

Our experiments described in the previous sections have shown that our proposed al-
gorithm, SPEAR (Spamming-resistant Expertise Analysis and Ranking), produced bet-
ter rankings than the evaluation baselines, i.e. the original HITS algorithm and a simple
frequency counting algorithm. It distinguished reasonably well between different types
of experts, and it consistently demoted different types of spammers and removed them
from the top of the rankings12. In other words, SPEAR was able to detect the subtle
differences between good and bad users, and to demote spammers while still keeping
the experts at the top of the ranking. We note that SPEAR measures expertise mainly
based on a user’s ability to discover (new) high quality content, which is but one aspect
of an expert’s skill set in the real world. However, a primary goal of collaborative tag-
ging systems is to identify high quality resources, so the expertise aspect analyzed by
SPEAR is very relevant in these systems.

There are a number of reasons of why an expert ranking algorithm is needed in folk-
sonomies. Firstly, with increasing number of documents for a given tag, it becomes
increasingly difficult to retrieve documents which are useful and of good quality. One
way to solve this problem is to first identify the experts, and then browse their collec-
tion which should contain good documents. On the other hand, by keeping an eye on
the collection of an expert, we are able to benefit from notification when he adds new
and useful documents to his collection.13

Our experiments have also shown that a simple technical adaptation of traditional
ranking algorithms to the data model of folksonomies does not yield satisfying results,
even if they employ a mutual reinforcement scheme to go beyond simple frequency
measures of expertise. While SPEAR achieved encouraging results for ranking users,
HITS and FREQ particularly failed with regard to their resistance to spamming activi-
ties. We argue that this is caused by a fundamental difference between scenarios of ana-
lyzing the Web’s hyperlink structure and analyzing the usage patterns in folksonomies.
In the former case, a Web author can indiscriminately increase the number of outgoing
hyperlinks of one of his Web documents to other documents, but it is much more dif-
ficult to manipulate the number of incoming hyperlinks from non-affiliated documents
to his Web document because those documents are not under his control. Traditional
ranking algorithms in Web information retrieval such as HITS or PageRank benefit from
this characteristic that results in a higher resistance to spamming activities on the Web.
In a folksonomy, however, the only source of information about a user’s expertise is
his personomy Pu, i.e. his collection of bookmarks and tags. Because documents in
a folksonomy cannot link back to users, this means that measuring the expertise of a
user is mainly based on data that is completely under his own control. Hence, we ar-

12Following the taxonomy of anti-spam approaches in folksonomies presented by Heymann [HKGM07],
SPEAR is a combination of a detection-based approach (analysis of user behavior) and a demotion-
based approach (spam-hardened rankings).

13Currently, Delicious allows users to subscribe to a particular tag or to become a follower/fan of another
user. However, there is neither a measure of a user’s expertise nor a recommendation of related experts
in your areas of interest given your own user profile.
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gue that the reason of the better performance of SPEAR is its higher level of detail in
terms of data analysis and its notion of implicit endorsement, i.e. the differentiation be-
tween discoverers and followers based on temporal information. Particularly, because
temporal information of user activity in a folksonomy is managed by a trusted entity
– the collaborative tagging system itself – it cannot be manipulated by users to game
the system and artificially boost their expertise. This increases the difficulty for spam-
mers to gain high user ranks in SPEAR whereas it is comparatively easy in the case of
traditional ranking schemes such as HITS.

Although we only discuss expert ranking in the context of folksonomies and col-
laborative tagging, SPEAR is in fact applicable to many different situations because it
assumes a very general model of user-resource interactions. For example, it can also
be applied to online services such as the social news site Digg14 or the microblogging
service Twitter15, which are very popular among Web users nowadays, to rank users by
their expertise in a given topic. Another area in which SPEAR could be used is in mea-
suring the expertise of authors of scientific papers, similar to studies such as [MR08]
that apply PageRank to citation networks.

Possible Improvements of SPEAR

While we have seen that SPEAR shows good performance for ranking of users accord-
ing to their expertise in a particular topic, we have identified some opportunities for
improvement.

Firstly, SPEAR may mistake inactive users as expert users, especially when these
users were once the discoverers of very high quality documents, as we have shown in
our analysis of the credit scoring function. A related idea is that of “recency of informa-
tion”, i.e. how recent and up-to-date user-contributed information is. It is reasonable
in our scenario that a user who has been more active recently should be given more
credit than a user who only discovered several popular documents in the distant past
and ceased contributing thereafter (scenario of a “retired researcher”). Hence, it would
be desirable to incorporate certain measures for reducing the weight and impact of old
user activities into SPEAR. This will make it easier for new users to rise to the top of the
expert ranks and prevent older users to have an undue influence. On the other hand, it
would also make SPEAR’s user and document ranking scheme more trend-aware, for
instance to the benefit of document recommendation schemes.

Secondly, SPEAR focuses on user activity in a document’s timeline. A tag-based
analysis is only performed in a pre-processing stage for filtering documents and users
by topic (where a topic is represented by a tag or a combination of tags) to produce
the topic-sensitive input data of SPEAR. This leads to two limitations of our approach.
The first limitation is that it overlooks users who have used related tags, such as syn-
onyms, of the tag chosen for analysis. For example, when ranking users for the topic
javascript, should we also consider users who are ranked high in programming?
While one can currently specify a conjunction or disjunction of related tags for creating

14Digg, http://www.digg.com/.
15Twitter, http://www.twitter.com/.
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the topic-sensitive input data of SPEAR, it is usually difficult to know all related tags of
a particular tag beforehand. Hence, it could be desirable to integrate some kind of tag
co-occurrence analysis into SPEAR to produce a more comprehensive user ranking.

Lastly, SPEAR could benefit from an analysis of the tagging vocabulary of users for
increasing its robustness against spammers who assign incorrect tags to documents. As
discussed in Section 2.6, there are other anti-spam approaches that tackle spammers by
focusing on an analysis of the tag usage of users [KEG+07, KFG+07, MCM09a, NO09],
i.e. the tags that users selected to annotate documents. We believe that these approaches
and SPEAR are complimentary to each other, and that a combination could result in an
even better user ranking algorithm.

5.7 Summary

In this chapter, we have presented our study of ranking users in folksonomies accord-
ing to their expertise in a particular topic. We have proposed the SPEAR ranking algo-
rithm, which is based on the relationship of mutual reinforcement between users and
documents as well as the notion of implicit endorsement via an analysis of the temporal
dimension of tagging activity. Our experiments have shown that the algorithm is effec-
tive at promoting expert users and demoting spammers at the same time. As such, we
have shown that an appropriate method such as SPEAR is able to gain a better under-
standing of the characteristics of users – in our scenario, information about their exper-
tise or trustworthiness – by analyzing their collective behavior in folksonomies. Hence,
our results have also shown that the activities and implicit interactions of users can
be exploited to derive information from folksonomies that is not explicitly expressed
anywhere, thus supporting our hypothesis regarding user expertise in folksonomies.

In the next chapter, we will present our approach to personalization of Web search
by exploiting folksonomies for profiling of users and Web documents, and demonstrate
how the approach can be implemented in practice.
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A question that sometimes
drives me hazy: am I or are the
others crazy?

Albert Einstein (1879—1955) 6
Web Search Personalization

with Folksonomies

We have seen in the previous chapters that there are differences in the perception of
resources on the Web between their authors and their readers, and differences in the
resources’ popularity or importance when measured by an analysis of the Web’s hyper-
link structure (driven by Web authors) and an analysis of the activity and implicit inter-
actions of users in folksonomies (driven by Web readers). The domain of Web search is
arguably the most prominent example where the analysis of the Web graph is exploited
to create applications and services for Web users. In this chapter, we propose a method
that combines both perspectives for the personalization of Web search. Namely, we
describe how we can understand the characteristics of users and resources through an
analysis of folksonomies and show, at the example of Google, how the search results of
a traditional search engine can be re-ranked according to this folksonomy-derived in-
formation. As such, our approach can be considered as an integration of the collective
behavior of Web users into traditional Web search1.

In the following sections, we describe our proposed Web search personalization ap-
proach and demonstrate how it can be implemented in practice. We present our anal-
ysis of experimental results and test our hypothesis with regard to information about
users and Web resources in folksonomies:

Hypothesis 3 (Web Search Personalization):
Folksonomies provide sufficiently rich information about users and Web re-
sources to allow for the personalization of Web search, i.e. an individualized
search for resources on the Web.

1Seen this way, our proposed personalization technique is related to the notion of third generation search
engines described by Broder [Bro02]. In his Web search taxonomy, he characterizes the third generation
of search engines as those approaches which attempt to blend data from multiple sources in order to
answer “the need behind the query”.
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Figure 6.1: Basic process of Web search. Search query refinement (1) influences query
parsing, whereas search result processing (2) influences the ranking.

6.1 Web Search and Personalization

6.1.1 Web Search

The domain of Web search is one aspect of the broad area of Web information retrieval.
While a comprehensive introduction to Web search is beyond the scope of this thesis,
we provide a brief summary of the basic search process and its most important aspects
in this section.

The search process starts with a user entering a query into a search engine, typically
by using search keywords such as “landscape photography switzerland”. The
search engine parses the query and performs a lookup at its index to provide a listing of
search results, i.e. an ordered list of the best-matching Web documents. The usefulness
of search results depends on the relevancy of the returned Web documents. While the
set of documents on the Web that include a particular word may be very large – a query
for “computer science” on the search engine Google returns 32 million results –
some of these documents may be more relevant, important or authoritative than others.
For this reason, search engines perform a ranking of search results in order to present
the best documents to users first (cf. Section 2.7). Typical examples of such ranking
algorithms are HITS [Kle98] and PageRank [BP98]. In the final step, the ranked list of
search results is presented to the user through the search engine interface. Figure 6.1
illustrates this process.

6.1.2 Personalization of Web Search

The drawback of Web search as described in the previous section is that the returned
search results are the same for any user given the same query. As such, this traditional
approach to Web search has been rather impersonal due to lack of adaptability to a
user’s individual preferences and topics of interests. The goal of Web search person-
alization is to address this need for a more individualized Web search experience, and
it has been shown to yield considerable improvements compared to non-personalized
search [SHY04, TDH05a, TDH07]. For achieving this goal, it integrates user-specific
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data into the process of finding the best-matching documents to a search query, thus
increasing the amount of input information available to search algorithms.

We can differentiate two general methods of Web search personalization [PSC+02,
XBF+08]: The first approach is search query refinement, which modifies or augments a
user’s original query, thus influencing the query parsing component in Figure 6.1. For
instance, a query for “IR”, when issued by a researcher in the domain of information
retrieval, might be translated to “information retrieval” [FD97, JRMG06]. Sim-
ilarly, the original weight of each query term could be changed. There exist several
techniques to implement search query refinement such as [RD06, CFN07]. Liu et al.,
for example, examine the search history of users in order to assign each user to a set of
categories [LYM02]. When a user submits a query, the search engine will add his cate-
gories to the query so that the search results may be personalized to the user’s topics of
interest.

The second approach is search result processing. Here, the user’s query is left as is and
instead the original order of search results is re-ranked based on information about the
individual user, thus influencing the ranking component in Figure 6.1. Again, there
exist several techniques to implement search result processing [Hav02, Hav03, SHY04].
Teevan et al., for example, examine the files on a user’s personal computer in order to
derive user preferences for re-ranking of search results [TDH05b].

In the following sections, we will describe how we can derive information about
users and documents from folksonomies and present our proposed method to leverage
this information for personalizing Web search through re-ranking of search results.

6.2 Folksonomies and Web Search

If we want to leverage folksonomies for Web search personalization, we must first have
an idea whether both usage scenarios – searching for Web resources and tagging them
after they have been discovered and deemed useful – are sufficiently related so that
positive results can be expected from such a personalization approach.

Several recent studies – including our research work described in Chapter 4 – have
investigated and compared the user activities in the domains of collaborative tagging
and Web search. Similar to the stabilization of folksonomies described in Section 2.4.4,
Wedig and Madani [WM06] found that users’ topical interest distributions in the con-
text of Web search become distinct from the population, and converge to a stable dis-
tribution. In their study of the collaborative tagging systems Delicious (Web resources
in general), Last.fm (music) and Flickr (images), Bischoff et al. [BFNP08] found that the
majority of tags can indeed be used for search, and that in most cases tagging behav-
ior show approximately the same characteristics as searching behavior. The research
works of Krause et al. [KJHS08, KHS08] support these findings. They investigated
the distributions of tags and search query keywords and found that both exhibit sim-
ilar characteristics and dynamics. For example, they could observe power-law and
small-world patterns in both scenarios (cf. Section 2.4.4). Their results also indicate
that tagging and searching behavior are indeed triggered by similar motivations. For
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example, they found evidence that popular events (e.g. political campaigns) trigger
both search and tagging activities close to the event. Krause et al. also report that, for
each search query, both traditional search engines and folksonomies focus on basically
the same subset of documents on the Web2. Heymann et al. [HKGM08] observed that
the users share a common distribution of the employed vocabulary when tagging and
searching, i.e. similar tags and search keywords are selected by users. They found that
popular search keywords and tags overlap significantly, and argue that folksonomies
can help with queries where tags overlap with search keywords. Outside the context
of folksonomies, Agrahri et al. [AMR08] investigated user collaboration in general for
improving the relevance of Web search results. They have shown that people are biased
towards documents at the top of the search result lists (even if the list is randomized).
However, they found that the explicit feedback of people – and tagging is a kind of ex-
plicit feedback – is not biased. They also observed that people’s shared preferences do
not always agree with a search engine’s result order. They therefore argue that social
search techniques might improve the effectiveness of search engines. Li et al. [LGZ08]
report that tags are suited for similarity computation of Web documents. They con-
clude that tag-based topic clustering and similarity computation is not only simple and
accurate, but also cost-effective in computation because the dimension of term vector
space can be significantly reduced.

All these studies provide strong support for the general applicability of folksonomies
to Web search personalization. Nevertheless, we have reported our own comparison of
folksonomies with other Web-related data and metadata including search queries in
Chapter 4. And while we have found similarities between tags and search keywords,
too, we have also observed a closer similarity of tags to classification information of
Web resources. In other words, users tend to use tags rather for the classification and
categorization of Web documents as in the traditional field of subject indexing (cf. Sec-
tion 2.3.1). We therefore argue that, instead of basing a personalization method on the
query step as in search query refinement (i.e. focusing on the similarity of search key-
words and tagging data), it may be even more beneficial to leverage folksonomies for
search result processing. As we have seen in Chapters 2 and 4, we may derive a user’s
personal preferences and topics of interests from his personomy Pu and, similarly, de-
rive topical information or the “aboutness” of a document from the collective tagging
activities of all users in a folksonomy. Hence, we can use folksonomies in a first step
to construct appropriate profiles for both users and documents, and in the second step
we can compute the similarities between these profiles for the purpose of re-ranking
search results.

We believe that such an approach has have several advantages. Firstly, it does not
rely on an overlap between tags and search keywords, thereby increasing the likeli-
hood of applying the approach also to non-popular queries [HKGM08]. Secondly, we
have found in Chapter 4 that tagging data in folksonomies is less suited for finding

2This finding of Krause et al. also supports our notion in Chapter 3 that folksonomies cover a consider-
able fraction of “relevant” documents on the Web, i.e. such documents that are actually perceived by
users as being valuable in one way or the other.
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the specific “needle in the haystack” with regard to resource retrieval. However, if we
can combine such an approach with existing search engines, we can “outsource” the
task of retrieving the base input set of documents for subsequent personalization to
these engines. Lastly, the decoupling of our proposed personalization method from a
user’s query and its search keywords also means that the approach might be extended
to other domains in Web information retrieval, for example recommendation of Web
documents.

6.3 Folksonomy-driven Personalization

In this section, we describe our proposed approach for Web search personalization
through search result processing with information derived from folksonomies.

The basic idea is to use a traditional search engine for processing a user’s query in
order to return a first list of ordered search results. Then, data from folksonomies is
used to re-rank this initial list of Web documents on the client side, e.g. the user’s Web
browser, according to the user’s topics of interest. Even though they do not explicitly
refer to folksonomies3, our personalization technique thus falls into the first category
of the taxonomy of re-ranking approaches described by Bharat and Mihaila [BM02],
because it effectively uses folksonomies to derive human classifications of Web docu-
ments. Similarly, our approach is also an implementation of the notion of Markines
et al. [MCM+09b], who argue that folksonomies allow us to extend the assessment of
what a Web resource is about from content and link analysis algorithms to the collective
“wisdom of the crowd”4.

While we will demonstrate how our personalization approach can be implemented
at the example of the Google search engine, the approach itself is independent of the
search engine being used. Hence, users are free to use their favorite search engine.

Because the approach makes use of the search results as returned by a search engine,
its performance depends on the size and the quality of the initial search result list. With
regard to the size of the search result list, we focus our studies in this chapter on the
use case where an ordered list L of Web documents with size |L| = 10 is returned
as the result of a search query. The reason is that |L| = 10 is the default value of
most popular search engines such as Google, Yahoo! and Microsoft Bing, and is also
often used in the literature. Evaluating the approach with a search result list of ten Web
documents will therefore contribute to a better comparison of experimental results with
other scientific studies and also yield more insights into its performance in a practical
setting. However, our approach itself is not restricted to a specific number or upper
limit of search results per query.

With regard to the quality of search results in the context of personalization, our
proposed method benefits from the strategy of search engines to distribute their Top

3The study of Bharat and Mihaila [BM02] was conducted in 2002, i.e. before collaborative tagging and
folksonomies becoming popular to a wider audience.

4For example, if many people agree that a Web resource is about programming, then with high probabil-
ity it is about programming even if its content does not include the word “programming”.

129



CHAPTER 6. WEB SEARCH PERSONALIZATION WITH FOLKSONOMIES

Figure 6.2: Google search results for “jaguar”. As can be seen in this exemplary
query, the search engine distributes its Top search results among the vari-
ous meanings and topics of the query.

search results among the various meanings and topics of a query [WM06]. For instance,
a query for “jaguar” on Google returns in the Top 10 search results Web documents
about the car, the feline and the Mac operating system of the same name in order to
increase the chance that at least one of these topics matches the user’s intended search
(see Figure 6.2). In other words, the results returned by search engines represent a range
of intentions that people associate with queries. The study of Teevan et al. [TDH05a]
supports this finding. Particularly, they argue that personalized search systems could
take current Web search results as a starting point for user-centric refinement via re-
ranking [TDH05b]. They report that the original ranking of results by a Web search
engine is a useful source of information for a more personalized ranking, and, as they
discovered, the first several results are particularly likely to be relevant.

Our proposed personalization method is mainly based on two elements: Firstly, the
profiling of both users and documents from folksonomy data, and secondly, the com-
putation of a similarity score between user and documents profiles, which is used for
the actual re-ranking step. In the following sections, we will describe in detail the var-
ious steps in the personalization process, and demonstrate how the approach can be
implemented in practice.
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6.3.1 Data Collection

In this section, we describe how the input data for our personalization approach is
collected.

The traditional scenario of Web search personalization involves search engines col-
lecting such data from people using their services. In our case, however, input data is
contributed by folksonomy users through social bookmarking and tagging activities.
Hence, our approach leverages data that is provided by users in a variety of scenar-
ios (e.g. browsing the Web, receiving recommendations from friends), of which Web
search is but one. It also means that a user’s personal data, i.e. the personal book-
mark collection in his personomy Pu, is not stored by search engines but the respective
collaborative tagging system. A user thus can benefit from his tagging activities not
only through the personalization of a single Web search engine, but theoretically of any
search engine or similar service on the Web. In other words, users can update their per-
sonal data wherever they happen to be on the Web, and similarly, make use of their per-
sonal data wherever they are. Another benefit of a folksonomy-driven approach is that
it can also leverage data from users’ tagging of such Web documents that are not pub-
licly accessible5 (e.g. intranets or access-restricted Web sites) [LV03, JKHS08] or newly
created, unlinked Web documents [HKGM08, KJHS08]. Generally, search engines can-
not index such documents and therefore a) cannot return these Web documents in their
search results and b) cannot collect data from the activities of users searching for these
documents.

Collaborative Tagging

As we have discussed above, we use the data contributed by users through social book-
marking and collaborative tagging as input information for our personalization tech-
nique. This data is available in the folksonomies and accessible through the respective
collaborative tagging systems.

The quality and relevance of this input data depend on the following two assump-
tions about bookmarking and tagging:

1. Users primarily bookmark and tag Web documents that are in one or the other
way useful.

2. Users have an incentive to add meaningful tags to their bookmarks, particularly
such tags that can be used for classification purposes.

The studies and research work described in Chapters 2 and 4 provide strong support
for these assumptions. In other words, the act of tagging and the actual tags can be
treated as explicit positive feedback6 with regard to the affected documents and the

5This class of Web documents that are not publicly accessible is also called “the Deep Web” [LV03], a
term coined by the computer scientist Mike Bergman [Wri09].

6Of course, it’s also true that the lack of a tag assignment doesn’t necessarily mean irrelevance [XBF+08].
For example, the user might have simply forgotten to add a specific tag. This problem can be mitigated
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topics they are about, and also with regard to the user’s topics of interests. We have
also shown in Chapter 4 that folksonomies contain data about Web documents that
is not directly contained in the documents’ contents or in the metadata supplied by
their authors, which suggests that integrating tagging information can further help to
improve our personalization method.

The research domain of personalization techniques often differentiates between im-
plicit and explicit data collection from users. In the former case, the behavior and activ-
ities of users are tracked and subsequently analyzed to understand the characteristics
and intentions of users. In the latter case, users are explicitly asked about their in-
terests, intentions and similar information. The primary advantage to using implicit
measures is that such techniques remove the cost to the user of providing explicit feed-
back [CR87], whereas explicit measures are generally thought to be more accurate with
regard to the user’s real interests and preferences [Nic97, KT03].

From a conceptual point of view, data collection from collaborative tagging and folk-
sonomies is a mixture of explicit and implicit collection techniques. On the one hand,
users are not prompted to enter their preferences or topics of interests explicitly in a
special configuration step. On the other hand, they are also not monitored or tracked
in the background as is the case for search engines and the analysis of search query
logs. Instead, personal data is collected rather explicitly because tagging Web docu-
ments is a manual user task, and users thus know exactly when such data is collected.
However, unlike explicit collection measures, this manual task is not an additional bur-
den for users as we have seen in Chapter 2. Additionally, we can further alleviate this
burden by providing tag suggestions and recommendations to users as discussed in
Section 2.4.3 in order to close the usability gap to fully implicit techniques. Further-
more, we present an easy way of semi-automated tagging of Web documents called
tagmarking in the next section that specifically targets the scenario of Web search.

It should also be noted that while users may search and tag within close time intervals
when performing searches on the Web, the act of tagging a document is not comparable
to providing explicit feedback on their interests to a specific search engine. In the former
case, users add interesting Web documents to their personal collections and may share
them with other users – thus benefitting from their tagging activities beyond the search
experience on a single search engine.

Tagmarking

We have seen in Section 6.2 that there is a similarity between search keywords and tags.
The notion of tagmarking, as we call it, exploits this similarity. The basic idea of tag-
marking is to allow a user to automatically tag a document that was found through an
interaction with a search engine by annotating the document with the search keywords
extracted from the user’s query.

by the integration of techniques such as tag co-occurence analysis, which identifies tags that are related
to a particular tag. In Chapter 7, we will also introduce an extension to the normal model of tagging
that is able to account for negative feedback of tag assignments with regard to the affected documents.

132



6.3. FOLKSONOMY-DRIVEN PERSONALIZATION

In our system prototype, which we discuss further below, we have developed a Web
browser extension that integrates tagmarking as a simple one-click button into the
browser’s user interface. While the user evaluates search results, the browser exten-
sion keeps track of his interactions with the search engine and stores his most recent
search query, e.g. “gutenberg poe raven”, in memory. Whenever the user finds a
Web document that is relevant to his query, he can conveniently annotate the document
and add it to his personal collection through a single click on the Tagmark button. The
browser extension will automatically translate the search query to tags and add them
to the respective bookmark (in our example, the tags would be gutenberg, poe and
raven), thus saving the user from providing these tags himself. Of course, the user can
still manually specify those tags he deems most appropriate for the document.

Tagmarking blends the scenarios and user experiences of searching for Web docu-
ments and tagging those documents7. Particularly, it reduces the effort of bookmark-
ing and tagging a document, and thus closes the usability gap to personalization ap-
proaches based on fully implicit data collection as described above.

6.3.2 Profiling Users and Documents

In this section, we describe how the input data presented in the previous section is
aggregated into profiles of users and Web documents.

A widely used model in the domain of information retrieval in general and Web
search in particular is the vector space model [MRS08]. In this model, Web documents
and search queries are represented as vectors in a common vector space according to
the terms extracted from either type of data. For example, a document d containing
the phrase “a man who buys a piano, owns a piano”8 would be mapped to a docu-
ment vector ~v(d), where the components are set to the respective term frequencies in
alphabetical order:

~v(d) =



3
1
1
2
1
1

⇐
a
buys
man
piano
owns
who

�� ��6.1

The same mapping can be achieved for search keywords in queries. Additionally,
several refinements may be used to adapt the vector representation of documents and
queries, for example by weighting terms with measures such as Term Frequency–Inverse

7A related work to our idea of tagmarking is the study of Jaschke et al. [JKHS08], who try to extract folk-
sonomies from search query logs. Here, search keywords extracted from a user’s query are considered
as implicit tag assignments to such Web documents that the user subsequently visits through clicking
on the search results of his query.

8Quote by pianist Vladimir Samoylovich Horowitz (1903-1989) about the difference between physically
possessing a piano and working hard to master the instrument.
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Document Frequency (TF-IDF) [SB88]. A very interesting property of representing doc-
uments and queries as vectors is that we can compute their relatedness through sim-
ilarity measures such as cosine similarity (cf. Section 4.3.7). These similarity measures
can then be used to retrieve those Web documents from a search engine’s index that are
most similar to a user’s query. Though simple, the vector space model has shown an
amazing effectiveness and efficiency in practice.

Inspired by this model, we propose to model the profiles of users and documents
using a topic space, where each dimension of the topic space represents a topic. As we
have seen in the previous chapters, tags are very suited to derive topical information
about users and documents. We therefore use tags as reasonable estimates of the topics
in the topic space. The profiles of users – i.e. their interests in topics – and the profiles
of documents documents – i.e. their topics or aboutness – can thus be directly inferred
from tagging data in folksonomies.

Hence, we may derive a user’s personal preferences and topics of interests from his
personomy Pu and, similarly, derive topical information or the “aboutness” of a docu-
ment from the collective tagging activities of all users in a folksonomy.

User Profiles

As described above, we derive a user’s interests in particular topics from his tagging
activities in a folksonomy F , namely his personomy Pu, which we have defined in
Section 2.2. To recall, the personomy Pu of a user u includes his tag assignments Yu =
{ (t, r) ∈ Tu ×Ru}. Hence, we can use these tag assignments to derive a user-specific
tag-document matrix Mu of size |T | × |R| in the topic space:

Mu =

 c11 · · · c1n
...

. . .
...

cm1 · · · cmn

 , ci,j ∈ {0, 1}
�� ��6.2

where the components ci,j are initialized as

ci,j :=

{
1, if the user u assigned tag ti to document dj

0, else

�� ��6.3

Mu represents the user’s assignments of |Tu| tags to |Ru| documents, which also
means that only |Tu| rows (Tu ⊆ T ) and |Ru| columns (Ru ⊆ R) in Mu are non-
empty9. A column vector ~bj in Mu represents the user’s bookmark (post) of document
(resource) dj.

To compute a user’s profile UP(u), we multiply his tag-document matrix Mu with a
document weight vector ~ωu with |R| components as follows:

9In general, we can assume that a user only employs a small subset |Tu| � |T | of tags to annotate
documents in his personomy Pu, and that he only tags a small subset of all documents within the
folksonomy, i.e. |Ru| � |R|. As such, the matrix Mu is generally sparse.
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UP(u) := Mu · ~ωu =

c∗1
...

c∗m

 , c∗i ∈N0
�� ��6.4

The user profile UP(u) is thus a vector with |T | dimensions in the topic space. The
values of its components c∗i denote the degree of interest of the user in a particular topic,
i.e. how important the topic is to the user as estimated from his tagging activities in the
folksonomy.

We assume that frequently used tags are more interesting and relevant to a user than
rarely used tags. In the study described in this thesis, we therefore define the docu-
ment weight vector ~ωT

u := ~1T =
[
1 · · · 1

]
, thus assigning equal importance to all

documents in the user’s personomy. In this case, the components c∗i of the user profile
denote the total count of tag ti for the user’s bookmark collection. Of course, it is pos-
sible to refine the computation of the user profile, for example by adapting the weight
of documents specified in ~ωu according to their quality (see Chapter 5) or the recency
of their addition to the user’s personomy. Table 6.1 shows an exemplary user profile
derived from the folksonomy of Delicious.

User profile
Topic Degree of Interest
programming 157
software 147
python 120
research 98
photography 97
opensource 95
astronomy 89
· · · · · ·

Table 6.1: Exemplary profile of Delicious user Enibevoli derived from his/her public
tagging activities in the Delicious folksonomy. Here, only the Top 7 interests
of the user are shown (rest omitted).

Constructing user profiles as described above implies that they can be updated in-
crementally whenever a user adds a new bookmark to his collection, or modifies or
deletes an existing one. This means that our personalization technique can adapt to
shifts of user interests over time. Additionally, it allows for a more efficient compu-
tation of user profiles compared to techniques that require full rebuilds of profiles on
changes [MCM+09b].
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Document Profiles

We construct profiles of Web documents similar to user profiles as described in the
previous section. In contrast to user profiles, which are derived from a user’s individual
personomy Pu, document profiles are the result of the collective tagging activities of all
users in a folksonomy F . Whenever a user ui creates or modifies a bookmark of a Web
document, this information is shared with the community, and the document’s profile
is updated accordingly.

In the first step, we filter the folksonomy F for any information about a particular
document d by restricting F to d and derive a document-specific tag-user matrix Md of
size |T | × |U | in the topic space:

Md =

 c11 · · · c1n
...

. . .
...

cm1 · · · cmn

 , ci,j ∈ {0, 1}
�� ��6.5

where the components ci,j are initialized as

ci,j :=

{
1, if user uj assigned tag ti to the document d
0, else

�� ��6.6

Md represents the assignments of |Td| tags to the document by |Ud| users10. This also
means that only |Td| rows (Td ⊆ T ) and |Ud| columns (Ud ⊆ U ) in Mu are non-empty11.
A column vector ~bj in Md represents a bookmark (post) of the document by user uj.

To compute a document’s profile DP(d), we multiply its tag-user matrix Md with a
user weight vector ~ωd with |U | components as follows:

DP(d) := Md · ~ωd =

c∗1
...

c∗m

 , c∗i ∈N0
�� ��6.7

The document profile DP(d) is thus a vector with |T | dimensions in the topic space.
The values of its components c∗i denote the degree of topical aboutness of the document,
i.e. to which extent the document is about a particular topic as estimated from the
collective tagging activities of users in the folksonomy.

We assume that frequently assigned tags indicate a stronger relation of the corre-
sponding topic to the document than rarely used tags. In the study described in this

10The set of unique tags assigned to a document d is defined as Td := { t ∈ T | (u, t, d) ∈ Y }. Likewise,
the set of users who tagged a document d is defined as Ud := { u ∈ U | (u, t, d) ∈ Y }.

11In general, we can assume that a document is only annotated with a small subset |Td| � |T | of tags,
and that only a small subset of all users in the folksonomy has tagged the document, i.e. |Ud| � |U|.
As such, the matrix Md is generally sparse as well.
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thesis, we therefore define the user weight vector ~ωT
d :=~1T =

[
1 · · · 1

]
, thus assign-

ing equal importance to all users in the folksonomy who have tagged the document. In
this case, the components c∗i of the document profile denote the number of times the
document was annotated with a particular tag ti by users in the folksonomy. Of course,
it is possible to refine the computation of the document profile, for example by adapting
the weight of users specified in ~ωd according to their expertise (see Chapter 5). Table 6.2
shows an exemplary document profile derived from the folksonomy of Delicious.

Document profile
Topic Degree of Topical Aboutness
python 704
hadoop 629
mapreduce 528
programming 266
distributed 220
tutorial 165
cluster 158
· · · · · ·

Table 6.2: Exemplary profile of a Web document derived from the collective tagging
activities of users in the Delicious folksonomy. The Web document in ques-
tion is a tutorial by the author of this thesis about writing an Hadoop MapRe-
duce application in the Python programming language [Nol07c]. Here, only
the Top 7 topics of the document are shown (rest omitted).

6.3.3 Profile Similarity

In this section, we describe how to determine the similarity of user and document pro-
files.

Our notion of user-document similarity is closely related to the measure of cosine
similarity. However, we deviate from the original definition of cosine similarity to ac-
count for some specific characteristics of folksonomies. We have seen in Section 2.4.4
that tag distributions in folksonomies exhibit power laws. Particularly, it has been
found that resources are annotated with a large number of tags that are only used once
or twice. These rarely used tags form the long tail of tag distributions. Closely related,
the power-law behavior of tag distributions also implicates that a large number of users
agree on a small set of tags, which means that users collectively arrive at a consensus
on which tags are the most important to describe a given resource. In other words, the
emergent consensus in folksonomies with regard to tags is mainly referring to those
tags that have managed to “escape” the long tail of tag distributions for resources. We
have also seen seen in Chapter 4 that even simple techniques such as thresholding may
be effective for separating “signal from noise” when leveraging folksonomies for Web
information retrieval.
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For these reasons, we integrate a filtering function F into our user-document simi-
larity measure. The purpose of this filtering function is to remove any tag noise from
document profiles (by assigning the respective components a value of 0), i.e. tags that
have been assigned only once or twice to the document, thereby discarding most of
the long tail of tags from the analysis. Additionally, the filtering function also flattens
the remaining non-zero dimensions of document profiles (by assigning the respective
components a value of 1) so that a filtered document profile is, basically, a binary rep-
resentation of the document with regard to the topic space. The idea is to leverage
community-derived topical information mainly for identifying commonly agreed top-
ical information of documents, and let the (unfiltered) profile of the particular user be
the key factor for the personalization of his search results.

In our case, the profile similarity of a user u and a document d is a dimensionless
score that is used for the relative weighting and re-ranking of documents within a given
ordered list. It is defined as:

SIM(u, d) := UP(u) · F(DP(d))
�� ��6.8

where F is a filtering function that updates the document profile DP(d) as follows:

c∗i :=

{
1, if c∗i > 2
0, else

�� ��6.9

For example, Equation 6.10 illustrates the similarity computation of the exemplary
user and Web document in Tables 6.1 and 6.2, respectively, which yields a similarity
score of 458. As we have mentioned above, the score 458 by itself is not very meaningful
– its use lies in the relative comparison with other computed similarity scores.

SIM(u, d) =



157
147
120
98
97
95
89
...


· F(



14
2
36
1
0
3
0
...


)⇐

programming
so f tware
python
research
photography
opensource
astronomy
...

=



157
147
120
98
97
95
89
...


·



1
0
1
0
0
1
0
...


= 458

�� ��6.10

The profile similarity defined in Equation 6.8 favors documents with tags (topics)
that are frequently applied by the user himself and, in combination with the personal-
ization algorithm described in the next section, tends to promote known, similar docu-
ments and to demote non-similar or unknown documents. Known in this case refers to
documents that are already in the folksonomy F , i.e. documents that have been tagged
already by some users. Thus, an important factor for the viability of our personalization
approach in practice is the availability of folksonomy data for Web documents, which
we investigate in Section 6.5.1.
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Algorithm 2 Personalize_List(u, L)
Input: The user u
Input: A list L of documents (here: search results)
Output: The personalized list L∗ of documents for user u

1: Set S to an empty list for storing <document, similarity> tuples
2: Set L∗ to an empty list
3: for all d in L do
4: APPEND tuple <d, SIM(u, d)> TO S
5: end for
6: # in-place stable sort, highest to lowest similarity
7: SORT S BY SIMILARITY
8: for all tuples <d, similarity> in S do
9: APPEND d to L∗

10: end for
11: return L∗

6.3.4 Personalization Algorithm

In the previous sections, we have described the steps of collecting data about users
and documents, transforming it into user profiles and document profiles, and defined
a similarity measure for these profiles. We can now perform the actual personalization
of Web search results by re-ranking the returned documents according to their simi-
larity with the user submitting the query. The personalization procedure is shown in
pseudocode in Algorithm 2. The reason for employing a stable sort mechanism in the
algorithm is to maintain the original order of search results in situations where a) per-
sonalization is not possible for some or all documents, or b) two or more documents
end up having equal profile similarities with the user. In such cases, the relative order
of these documents is preserved.

The left side of Table 6.3 presents an exemplary search query on Google for “security”
by one of our test users (cf. Section 6.5.2), who showed a strong interest in information
technology and network security in his user profile. After we performed the person-
alization, the result list looked as shown on the right side of Table 6.3. In general,
Web sites related to IT security were promoted to the top, while sites such as the White
House’s information page about Homeland Security (whitehouse.gov/homeland) were
demoted to the bottom. In this example, the algorithm confirmed the top-ranked search
result of SecurityFocus for this user, which is a well-known and popular Web site in the
IT security community. The homepage of CERT (cert.org), a center of Internet security
expertise, was pushed from position 9 to 2. The US Department of Homeland Secu-
rity (dhs.gov) lost six positions and was ranked at the bottom of the list. One of the
Microsoft Web documents (microsoft.com/security/) was demoted because it gives a
only a very high-level overview of IT security compared to the higher-ranked docu-
ments.
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# URL # 4# URL
1 securityfocus.com/ 1 • securityfocus.com/
2 microsoft.com/security/ 2 ⇑ +7 cert.org/
3 microsoft.com/technet/security/def... 3 • microsoft.com/technet/security/def...
4 dhs.gov/ 4 ⇑ +4 w3.org/Security/
5 whitehouse.gov/homeland/ 5 ⇑ +2 ssa.gov/
6 windowsitpro.com/WindowsSecurity/ 6 ⇑ +4 nsa.gov/
7 ssa.gov/ 7 ↓ −5 microsoft.com/security/
8 w3.org/Security/ 8 ↓ −2 windowsitpro.com/WindowsSecurity/
9 cert.org/ 9 ↓ −4 whitehouse.gov/homeland/
10 nsa.gov/ 10 ↓ −6 dhs.gov/

Table 6.3: Google search results for “security” before (left) and after (right) person-
alization. For readability, the URL schemes and “www.” prefixes have been
omitted, and long URLs have been truncated.

6.3.5 Personalization Workflow and Implementation

General Workflow

On a technical level, our implementation of the proposed personalization method is a
client-side approach, i.e. the personalization is performed by a software application on
the user’s computing device. This application communicates with two external Web
services, namely a Web search engine (for search results) and a collaborative tagging
system (for folksonomy data), to retrieve the input data required for the personalization
algorithm. The general process of Web search personalization works as follows:

1. A user u makes a query on a Web search engine of his choice.

2. A ranked list of Web documents L is returned by the search engine as the result
of this query.

3. For each result document di ∈ L, the corresponding tagging dataFdi
12 is retrieved

from the collaborative tagging system.

4. The user’s personomy Pu is retrieved from the collaborative tagging system.

5. For each document di ∈ L, the document profile DP(di) is computed.

6. The user profile UP(u) is computed.

7. The list of documents L is re-ranked based on the similarity SIM(u, di) of these
profiles.

In practice, this 7-step process can be computationally expensive because the volume
of data transferred in steps 3 and 4 can be rather large for very popular documents

12Fdi
represents the restriction of F to di.
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(i.e. tagged by a lot of users) and for very active users with large personomies. In such
cases, the time required to transfer such data from the collaborative tagging system to
the client-side application (i.e. the network latency) may increase to such a level that
it might negatively impact the user experience and usability of the personalization. In
other words, this general process might take longer than desired.

Optimized Workflow

A lot of existing collaborative tagging systems such as Delicious provide programmatic
access to aggregated information about documents and users, and also the possibility
to retrieve tagging data from multiple documents at once. Specifically, they allow for
convenient retrieval of a) a user’s tagging vocabulary Tu including the number of times
these tags have been selected by the user to annotate documents with (effectively, the
user’s profile UP(u) as defined in Equation 6.4), and b) the tags including frequency
counts with which the community of users in the folksonomy have annotated a par-
ticular document with (effectively, the document’s profile DP(d) as defined in Equa-
tion 6.7)13.

The general process can thus be optimized in practice so that the problematic cases
described above are not affecting the technical performance of the personalization any-
more. The optimized process works as follows:

1. A user u makes a query on a Web search engine of his choice.

2. A ranked list of Web documents L is returned by the search engine as result of the
query.

3. For each result document di ∈ L, the corresponding document profile DP(di) is
retrieved from the collaborative tagging system.

4. The user profile UP(u) is retrieved from the collaborative tagging system.

5. The list of documents L is re-ranked based on the similarity SIM(u, di) of these
profiles.

Here, only the profile similarities (including filtering of the document profiles by
applying F to them) and the re-ranking of documents have to be computed on the client-
side. Because the user profile UP(u) can also be cached and updated locally by the
client application, it is possible to save yet another step – and thus one HTTP request –
in practice. The communication flow of the optimized process is shown in Figure 6.3.

13The same data is required, for example, to create so-called tag clouds of a particular user, i.e. visual
depictions of a user’s tagging vocabulary. Tag clouds can be similarly created for documents for vi-
sualizing the tags with which the community of users in the folksonomy have annotated a particular
document. Since tag clouds are a popular feature among users, most collaborative tagging systems
readily compile and aggregate the required data for implementing tag clouds, and often also provide
programmatic access to this data through their application programming interfaces (API) and feeds
(e.g. RSS, JSON).
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Figure 6.3: Optimized workflow for Web search personalization.

Transparent Personalization

In our prototype, the client-side application is a Web browser add-on (plugin), which
we designed and implemented for Mozilla Firefox14. This browser add-on can detect
when a user visits a search engine such as Yahoo! or Google, and hooks itself into the
Web search process (cf. Section 6.1.1). Whenever the user submits a search query, the
add-on personalizes the returned search results according to the user’s topics of inter-
ests, particularly by carrying out steps 3-5 of the optimized personalization workflow
as described in the previous section.

On the user interface level, the personalization of our prototype is completely trans-
parent to the user and happens instantly even though extra communication with the
collaborative tagging system is required: The browser add-on analyzes the HTML code
of search result pages on the fly, and re-ranks the search results by modifying the DOM
tree15 of these pages in real-time on the user’s computing device (see illustration in
Figure 6.4). While the technical implementation of DOM tree manipulation is specific

14Mozilla Firefox Web browser, http://www.mozilla.com/firefox/, last retrieved on March 01,
2010.

15The Document Object Model (DOM) is a platform- and language-neutral interface that allows programs
and scripts to dynamically access and update the content, structure and style of Web documents. A
document can be further processed and the results of that processing can be incorporated back into
the presented page. A description of DOM provided by the World Wide Web Consortium (W3C) is
available at http://www.w3.org/DOM/, last retrieved on March 01, 2010.
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Figure 6.4: DOM tree of search result pages on Google. On the user interface level,
the personalization in our prototype is completely transparent to the user:
Our browser add-on analyzes the HTML code of the search result pages of
Web search engines, and updates the search results in real-time on the user’s
computing device. In the screenshot on the left side, for example, the second
search result “ACM: Publications” is contained in the DIV element that is
highlighted in the DOM tree view on the right side (here: DOM Inspector of
the Firefox browser).

to a particular search engine16, the proposed personalization method is conceptually
independent of the search engine being used.

Additionally, the browser add-on enhances the browser GUI with a “Tagmarking”
button as described in Section 6.3.1. It also highlights such Web documents in search
results that have already been tagged by the user for easier visual identification of doc-
uments known to the user17. As illustration, Figure 6.5 shows the re-ranked search
result list described in Table 6.3 at the example of the Google search engine.

16DOM tree manipulation is specific to a search engine because the search engine user interfaces, e.g.
the design and structure of search result pages, and corresponding HTML code vary between search
engines.

17We are currently working on a feature that will retrieve potentially relevant Web documents from a
user’s personomy Pu based on the entered search query. Such a feature would allow us to present Web
documents to the user that are not in the search engine’s index and thus cannot be returned through a
Web search, e.g. a non-public intranet Web document.
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Figure 6.5: Personalized search results on Google. Here, the re-ranked search result
list described in Table 6.3 is shown. “As you can see, you can see nothing” –
with the exception of the green star icon, which denotes that the user already
tagged the homepage of Security Focus in the past, the personalized search
result list looks exactly like Google’s original.

6.4 Experimental Setup

We evaluate the performance of the proposed personalization method with a quantita-
tive analysis and a qualitative user study.

Firstly, the practical feasibility of the personalization method depends on the availabil-
ity of folksonomy data about Web documents in search results. The more documents
are expected to be covered by the tagging activities of folksonomy users, the more data
may be available for constructing document profiles and, subsequently, for allowing
proper personalization of Web search according to our folksonomy-driven approach.
On the opposite end, we cannot re-rank documents that haven’t been tagged by users,
which means that such documents would keep their relative positions according to the
initial ranking of the search engine (but would be ranked below any documents for
which the profile similarity with the user is greater than zero). In Chapter 4, we have
already investigated the availability of the folksonomy data in the general context of
Web information retrieval. We found that folksonomies do indeed provide large vol-
umes of data about Web documents and already cover a considerable fraction of the
Web. For the specific scenario of Web search personalization, we further extend and
augment these studies with an analysis of folksonomy data for Web search results. An-
other finding described in Chapter 4 is the correlation between folksonomy data and a
document’s popularity on the Web (indicated by its Google PageRank): the more pop-
ular a document, the more likely it is tagged by users. We can thus infer information
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about the availability of folksonomy data about search result documents by analyzing
their PageRank distributions. Hence, we have combined our previous experimental
results with an analysis of the AOL500k corpus (see Section 3.1.4). We randomly sam-
pled∼1,750,000 queries with 1,000,000 clicked search results from AOL500k, and subse-
quently retrieved PageRank information for each clicked Web document from Google.
This experimental data set allows us to gain insights into the PageRank distributions of
Web search results, and thereby also to estimate the availability of folksonomy data for
Web search personalization.

Secondly, we evaluate the quality of the personalization method by comparing its
rankings with the evaluation baseline of the original, non-personalized results of a
search engine. While involving a human in an evaluation process is rather cumber-
some and expensive, previous studies such as the work of Najork et al. [NZT07] have
shown that human judgments are crucial for the evaluation of search engines because
no document features have been found yet that can effectively estimate the relevance of
a document to a user query. For this reason, it is required to ask a human to evaluate the
outcomes of our personalization method in order to compare the quality of (re-)ranked
search results. Hence, we conducted a user study with N = 8 participants that followed
the experimental methodology of search engine evaluation by Haveliwala [Hav02]18.

With regard to the human participants, all our testers were computer literate, famil-
iar with Web search and users of Delicious. Their job functions included researchers,
system administrators, webmasters and software developers. With regard to the tech-
nical setup of the experiment, we selected Google as the search engine and Delicious
as the collaborative tagging system (cf. Section 6.3.5). We constructed the user profiles
of our participants from their personomies Pu

19 on Delicious; document profiles were
created similarly. The actual user study was conducted as follows: For each participant,
we randomly built a set of 13 search queries from her or his search history and tagging
activities, thus totaling 104 queries. For each search query, a participant was presented
two result rankings of |L| = 10 Web documents, i.e. the first result page of the query:
1) the original, non-personalized list from Google Search, and 2) the personalized ver-
sion according to our proposed approach. The experiment was conducted as a blind
test, i.e. the result lists themselves were presented in random order so as not to bias the
participants. Similarly, they were not told anything about how either of the rankings
was generated. Participants were then asked to determine which of the two results lists
of a query was “better” overall, in their opinion. Here, better was defined as ranking
highly relevant results at the top of the list and ranking irrelevant results at the bottom,
i.e. promoting “good” results and demoting “bad” results. Participants could also vote
for a draw if they could not decide which list was better.

18It should be noted that Xu et al. [XBF+08] propose an evaluation framework for personalized search
using folksonomies that tries to circumvent the need for direct user studies. However, their framework
bootstraps a ground truth for evaluation by assuming a strong correlation between the tags and search
query keywords. While we have seen in Chapter 4 that there is a correlation between tags and search
keywords, we argue that the correlation is not strong enough to rely on it for evaluation purposes in
the context of our work described in this chapter.

19The average number of posts (bookmarks) in a participant’s personomy Pu in our study was 153.
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6.5 Experimental Results

We start our discussion of the experimental results with the quantitative study of folks-
onomy data in the scenario of Web search, and continue with the results of our qualita-
tive user study.

6.5.1 Quantitative Analysis

Firstly, we looked at Web documents and analyzed the average PageRank of displayed –
but not yet clicked – documents for each search result position. We have seen that the
volume of folksonomy data about a document increases with its popularity on the Web.
As such, the PageRank distribution of search results is an indication of the availability
of tagging data in practice.

We observed that the Top 10 positions had an average PageRank of 5.2 or higher as
shown by the black line in Figure 6.6. The dashed red line denotes the click frequency
of users per search result position. The first five positions accounted for 73.7% of all
clicked search results, most of which was contributed by the Top 1 position. The drop
between positions 10 and 11 is most probably caused by the default configuration of
AOL/Google search to show only |L| = 10 Web documents per search result page (a
setting similar to other popular search engines such as Yahoo! Search and Microsoft
Bing), which means that users are very unlikely to look for search results beyond the
first page. These results are encouraging for our personalization method. On the one
hand, they indicate that proper re-ranking is very relevant and useful in practice be-
cause it is important to promote the best documents according to a user’s personal
preferences to the prominent positions at the very top of result lists. On the other hand,
Web documents in search results are likely to be tagged due to the expected high Page-
Rank. For example, we have seen in Section 4.3.1 that about 73.1% of Web documents
with a PageRank of 5 were tagged in our experimental data set CABS120k08. In this
context, we also observed that the difference in data sampling between CABS120k08
and DMOZ100k06 data sets had a visible effect in the scenario of Web search: The
estimated probabilities were much higher for CABS120k08 than for DMOZ100k06. Be-
cause the Web documents contained in CABS12k08 are derived from an intersection of
AOL500k with the Open Directory Project (cf. Section 3.2.2), we argue that it provides
better estimates of the true probabilities of Web documents being tagged in search re-
sults than the DMOZ100k06 data set.

Secondly, we looked at users and averaged the PageRank of clicked search results
for each user in the experimental data, i.e. we derived individual click preferences for
Web documents regardless of their position in the search results. This allows us to
investigate the PageRank distributions of Web documents in search results without a
potential bias due to the positioning in the result lists, and also account for variations
of individual user click behavior to a certain extent.

We observed that 80.1% of users had an average clicked PageRank of 5 or higher,
and 32.9% had a PageRank of 6 or higher. The details are shown in Figure 6.7, where
the black line denotes the percentage of users with an average clicked PageRank of x
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Figure 6.6: PageRank distribution of displayed search results by position. Mean
PageRank of Web documents (black) including standard deviations (gray
bars) per search result position. The click frequency of users is shown by the
dashed red line.

or higher. The solid and dashed diamond lines show the estimated probabilities of a
document to be tagged in our data sets CABS120k08 and DMOZ100k06, respectively,
based on our findings in Chapter 4. Hence, for most clicked Web documents in search
results, the probabilities of having been tagged are quite high – in CABS120k08, for ex-
ample, 73.1% and 87.0% for PR5 and PR6 documents, respectively. These experimental
results therefore suggest that most users would indeed benefit from the proposed per-
sonalization approach in practice.

While these observations are promising already, it should also be noted that for be-
ing effective the personalization method does not require every single document being
tagged. It is acceptable if some k < |L| documents in search results have not been
tagged yet, because the remaining |L| − k documents may still allow for reasonable
personalization quality as we will in the next section. Additionally, the usage of collab-
orative tagging systems such as Delicious is still increasing in the Web today [CM08],
and thus the availability of folksonomy data about Web documents will further increase
over time as well.
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Figure 6.7: PageRank distribution of clicked search results regardless of position.
The frequency of users with an average PageRank for clicked search results
equal to or higher than x, i.e. Puser(PageRank ≥ x), is shown by the black
line enclosing the gray plot area. The solid and dashed diamond lines de-
note the frequencies of tagged documents for a particular PageRank x in
the experimental data sets CABS120k08 and DMOZ100k06, respectively, i.e.
Pdoc(tagged|PageRank = x).

In a last experiment, we randomly sampled 140 “seed” tags (T0) from the so-called
“popular tags” reported by Delicious20. We subsequently run search queries for each
seed tag on Google, yielding a total of |T0| ∗ |L| = 1, 400 search result documents
(Rquery). For each document, we retrieved the document’s most popular tags from
Delicious, thereby discarding tag noise from our analysis. Hence, we effectively per-
formed a similar procedure as carrying out steps 1-3 of the optimized personalization
workflow described in Section 6.3.5. The final data set consisted of a total of 981,989
user bookmarks (P(Fquery)) with 20,498 assignments (Yquery) of 2,300 tags (Tquery). The
details are shown in Table 6.4 and Figure 6.8. We observed that about 9 out of 10 search
results were bookmarked and 8.5 out of 10 search results were tagged. Again, this is
a promising outcome with regard to the practical feasibility of our personalization ap-
proach. Our findings indicate that the majority of search results – at least for popular
tags/queries – can be personalized in practice.

20Delicious Popular Tags: http://delicious.com/tag/.
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Pos Bookmarks Tag Assignments Pos Bookmarks Tag assignments
1 1450 19.8 6 456 13.7
2 627 16.4 7 495 13.4
3 1199 15.5 8 574 13.7
4 451 14.2 9 404 14.0
5 610 12.5 10 784 13.3

Table 6.4: Mean number of bookmarks and tag assignments (here: only with regard
to popular tags) of Web documents per search result position. The peak of
784 for position 10 was caused by two extreme data points in our sample; it
drops to 519 when these two data points are removed.

1 2 3 4 5 6 7 8 9 10

Search result position

0.5

0.6

0.7

0.8

0.9

1

Fr
eq

ue
nc

y

Figure 6.8: Percentage of Web documents per search result position that had at least
one associated popular tag.

6.5.2 Qualitative User Study

In our user study, the participants considered the personalized list to be better than the
original result list in 63.5% of the queries as illustrated in Figure 6.9. The evaluation
baseline, i.e. the unmodified result list as returned by the Google search engine, was
preferred in 29.8% of the queries. An interesting observation was the low frequency
(6.7%) of the cases where users could not prefer one list over the other.

Previous studies such as [JP01] and our experiments described in Chapter 4 have
shown that most search queries are rather short, with the average search query consist-
ing of only one or two words. We found that the personalization method was particu-
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Figure 6.9: Results of the qualitative user study. In our study, participants preferred
the personalized list in 63.5% of the queries. The original, non-personalized
ranking of Google was deemed better in 29.8% of queries. For 6.7% of
queries, users could not prefer one list over the other.

larly helpful for disambiguation of words and contexts for queries such as jaguar or
golf (see also the security example in Section 6.3.4). It also showed its strength for
queries that used abbreviations or acronyms such as sf (e.g. “Science-Fiction” or “San
Francisco”). As such, these results indicate that the proposed personalization approach
is especially helpful for short queries by properly understanding and matching the top-
ics of documents with the individual topical preferences of users. On the other hand,
we found that the personalization method had difficulties to improve search results for
those users who were only broadly interested (or knowledgeable) in a particular topic,
and thus were not providing a sufficient level of detail with regard to tags. For instance,
a user with a large number of bookmarks that are tagged just with designwill not ben-
efit as much from this personalization approach as a user who tags his bookmarks about
design more granularly. This means that the more a user is able and willing to provide
adequate tag assignments for Web documents, the better we can understand his top-
ics of interests based on an analysis of his personomy Pu and, as a consequence, the
better will be the performance of Web search personalization. Lastly, another finding
was that the personalization helped to demote spam documents, e.g. “fake” reviews of
products, from the top ranks in search results because these documents where unlikely
to be tagged by legitimate users21.

21While we have seen in Chapter 5 that promoter-type spammers in folksonomies are a common phe-
nomenon nowadays, they do not seem (yet) to simultaneously impact Web search on a larger scale. A
possible explanation is that spammers have not yet focused on concentrated, parallel attacks on both
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It should be noted that the quality of personalization depends in our case on the
initial quality of search results as returned by a search engine. Since we have used the
search engine of Google in our experiments, we can expect that this initial quality is
very high, representing the state of the art in terms of Web search. It could thus be
argued that users in our study would be satisfied with search results regardless of how
Web documents are re-ranked. However, the research studies and our own analyses
described in the previous sections have shown that user behavior shows a strong bias
towards the positioning of Web documents in the result lists. This means that variations
in search rankings will also result in different perceptions and judgements of users
with regard to these rankings. Additionally, the difference in users’ preferences for
personalized and non-personalized search rankings was quite large in our user study.
We therefore argue that the personalization approach is indeed able to augment and
improve traditional Web search for the benefit of users.

6.6 Discussion

Our experiments described in the previous sections have shown promising results for
our proposed personalization approach, and the participants of our user study found
that it produced better rankings than the evaluation baseline. Compared to other tech-
niques to augment Web search based on folksonomy data, our approach is not relying
on the similarity of collaborative tagging (tags) and search queries (keywords).

We can summarize the further benefits of the personalization approach as follows.
Firstly, tagging a Web document will improve future Web searches even if the user is
not actively using a search engine. For example, when a user tags a Web document
recommended to him via email, it will still affect his user profile. Secondly, the ap-
proach can personalize the search results from different search engines. Because the
user profile is not managed by a single search engine, he can leverage his tagging activ-
ities to personalize multiple (even competing) search engines with the same user data.
The approach can even personalize the search results of a Web search engine that na-
tively does not support personalization itself. Thirdly, collaborative tagging and social
bookmarking can reach areas of the Web that are inaccessible for search engines (e.g. in-
tranets, access-restricted Web sites or newly created, unlinked Web documents). Hence,
it is also possible to collect data from the activities of users tagging these documents.
Fourthly, it is comparatively easy to explain users why a Web document has been pro-
moted or demoted during personalization (e.g., “...because you have annotated a lot
of Web documents with the tag foobar...”), if such information is desirable. Lastly,
the computational expense of the client-side personalization process is very low, par-
ticularly since we only need to compute |L| profile similarities. As such, the proposed
personalization approach can easily be performed on client devices with limited energy
or processing power such as mobile phones, and is thus not affected by the drawbacks
of similar personalization techniques as described by Jeh and Widom [JW03].

collaborative tagging systems and search engines, i.e. trying to boost the prominence of their content
in both domains at the same time.
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A commonly used argument against the effectiveness of client-side re-ranking tech-
niques is that they are limited to the re-ranking of the Top |L| search results. In other
words, such personalization approaches depend on the quality of the initial list of |L|
Web documents returned by a search engine – if, for example, these documents are not
sufficiently relevant to the query, the user will not benefit much from further re-ranking
of the documents. However, we have noted already that while we have focused our
experiments on the Top 10 search results for reasons explained in Section 6.3, our ap-
proach is neither conceptually nor technically limited to a specific number or upper
limit of search results per query. Recent developments such as the launch of services
like Yahoo! BOSS (Build your Own Search Service)22, which gives users free access to the
search index of Yahoo!, allows us to retrieve a much larger number23 of search results
per query. Additionally, client-side techniques also help to balance user privacy and
search quality [Hav02, XWZC07] because users don’t need to identify themselves to
search engines to benefit from personalized search.

Although we have focused our discussion on the context of Web search, the per-
sonalization approach proposed in this chapter is not limited to this scenario. The
personalization algorithm described in Section 6.3.4 accepts as input any list of Web
documents, of which a list of search results is but one example. We can thus leverage
the approach also in other areas of Web information retrieval. In [Nol09], for example,
we have demonstrated how the idea of personalization described in this chapter can be
used for creating individual recommendations of Web documents from news feeds.

Possible Improvements

While we have seen that the proposed personalization approach shows good perfor-
mance for re-ranking Web documents according to their similarity with a user’s topics
of interests, we have identified some opportunities for improvement.

Firstly, understanding the user’s topics of interests may be further improved. It has
been found that identifying short-term and long-term trends in a user’s interests is ben-
eficial for personalization purposes [SHY04, DSW07]. Hence, deriving such trends, for
example from temporal information about users’ tagging activities, could thus help to
produce an even better ranking of Web documents in search results. Similarly, tags that
are related to those in a user’s personomy Pu could be integrated into the personaliza-
tion approach for improved construction of topical information about users and Web
documents [MC07]. Wetzker et al. [WZBA10] propose a user-centric tag model that
derives mappings between a user’s personal tagging vocabularies Tu and the global
folksonomyF , which helps find similarities between users (and documents) even when
their tagging vocabularies do not overlap. Integrating such techniques could thus fur-
ther improve the representations of users and documents in the topic space.

Secondly, it could be desirable to integrate additional documents into Web search
results from a user’s personomy or from the folksonomy at large, i.e. documents that

22Yahoo! BOSS, http://developer.yahoo.com/search/boss/.
23In the case of Yahoo! BOSS, a maximum number of 1,000 search results may be retrieved per query.
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are not present in the initial search result list L.24 In this case, data from folksonomies
could be used not only for re-ranking a given list of documents extracted from a search
engine’s index, but also for injecting documents directly from collaborative tagging sys-
tems. For example, prior work has shown that about 40% of search queries are related
to re-finding already visited Web documents [TDH07]. Embedding documents relevant
to a particular search query from a user’s personomy, i.e. documents that he has already
read and perceived as useful in the past, might therefore further improve the quality
of Web search. Similarly, high quality documents that match a user’s query could be
retrieved from folksonomies through techniques such as SPEAR (see Chapter 5) that
measure the quality and popularity of Web resources within folksonomies (in contrast
to an analysis of the Web graph as is done by search engines).

6.7 Summary

In this chapter, we have presented a new approach to personalization of Web search
by exploiting folksonomies for deriving topical information about users and Web re-
sources. We have demonstrated how the approach can be implemented in practice at
the example of the search engine Google and the collaborative tagging system Deli-
cious. Our experiments have shown that the approach is effective at extracting infor-
mation from folksonomies in order to tailor search results by re-ranking Web docu-
ments according to a user’s individual topics of interests. We have also shown that the
approach is feasible in practice with regard to the availability of sufficient volumes of
folksonomy data about Web documents in the scenario of Web search, and that users
have perceived an improvement in the quality of search results compared to the eval-
uation baseline. Hence, our results support our hypothesis that folksonomies provide
sufficiently rich information about users and Web resources to allow for the personal-
ization of Web search.

In the next chapter, we will explore how the concepts of collaborative tagging and
folksonomies can be exploited for Web filtering. We will present a case study of a work-
ing prototype, TaggyBear, and describe and evaluate its system design and anatomy.

24The browser add-on that we have developed already highlights existing documents in L that have been
tagged by the user submitting the query.
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You do ill if you praise, but
worse if you censure, what you
do not understand.

Leonardo da Vinci (1452–1519) 7
Web Filtering

We have seen in the previous chapters that the convenience and popularity of collab-
orative tagging and folksonomies have resulted in large volumes of metadata about
Web resources, particularly with regard to classification and categorization of these re-
sources. In Chapter 6, we have demonstrated how this information can be leveraged for
the personalization of Web search. Web filtering, another domain of Web information
retrieval, is concerned with the classification of Web resources as well. While the goal
of search personalization is the facilitation of access to Web resources, the goal of Web
filtering is the prevention of access to some of these resources. A typical scenario of Web
filtering is the so-called “blocking” of resources that have been assigned to specific con-
tent categories such as phishing or pornography by technically preventing that such
resources can be retrieved from the Web or displayed on a user’s computing device.
However, the public reputation of traditional approaches to Web filtering has deterio-
rated in recent years because they have also been used, for instance, by governments
to enforce censorship on their citizens [DPRZ08]. Similarly, existing Web filtering tech-
niques still suffer from problems such as inaccurate classification of resources or lack of
acceptance among users, which hinder their effectiveness and success in practice.

Based on the scientific findings described in the previous chapters, we argue that an
alternative approach to Web filtering would be to harness the concepts of collabora-
tive tagging and folksonomies in order to create a user-driven filtering application of
the Web, i.e. establishing a “democracy” on the Web with regard to content filtering,
in the spirit of similar community projects such as Wikipedia1. In this chapter, we ex-
plore how collaborative tagging and folksonomies can be exploited to implement such
an approach in practice, and present a case study of a working prototype called Taggy-
Bear. We describe and evaluate its system design and anatomy, and test our hypothesis
regarding collaborative tagging and folksonomies:

Hypothesis 4 (Web Filtering):
The concepts of folksonomies and collaborative tagging can be exploited
for user-driven filtering of the Web, i.e. allowing or blocking access to Web
resources based on human input.

1Wikipedia, http://www.wikipedia.org/.

155

http://www.wikipedia.org/


CHAPTER 7. WEB FILTERING

7.1 Filtering the Web

The domain of Web filtering is one aspect of the broad area of Web information retrieval.
It is concerned with the classification of Web resources for the purpose of preventing
the access to such resources that have been assigned to specific content categories. One
usage scenario where Web filtering is employed is the protection of users from ma-
licious, illegal or otherwise harmful content. While a comprehensive introduction to
Web filtering is beyond the scope of this thesis, we provide a brief summary of its basic
components and most important aspects in this section.

Firstly, a classification scheme for resources must be defined. Tasks include the decision
on the number and type of categories as well as their structure and relations. For ex-
ample, a filtering application that focuses on protecting users from phishing2 Web doc-
uments [RW08b] could simply use a binary classification of resources into phishing
and not phishing, similar to the scenario of spam filters for emails. Secondly, Web
resources need to be analyzed and subsequently classified based on their content. This
task, also called the rating of the resource, is arguably the most difficult step of Web
filtering. The challenges include the correct understanding and interpretation of the
content of a Web resource (including any multimedia content such as images or videos,
as well as interactive content such as Adobe Flash), and the final decision to which cate-
gory or categories the resource is assigned to. Thirdly, a filtering policy must be defined,
which is primarily the selection of a subset of categories for which filtering will be en-
forced, i.e. the access to any resources assigned to this subset of categories is restricted.
In a university network, for example, such a policy could be centrally managed and
apply to all users of the university. In a home environment, a user could individu-
ally define the policy according to his personal preferences. Lastly, the actual filtering
mechanism determines how the access restriction to Web resources is technically imple-
mented. For example, the display of a resource on a user’s computing device could
be obfucsated, or the retrieval of the resource from the Web could be prevented in the
first place. It should be noted that these steps may but not need to happen at the same
time. For instance, the analysis and subsequent classification of resources may be per-
formed prior to a user retrieving a resource from the Web, i.e. similar to the way search
engines crawl and index the Web independently from the actions of users submitting
their queries to the search engine [MRS08].

The filtering workflow is straight-forward from a user’s perspective: Web filtering
applications are commonly implemented as client-side or server-side software, or a
combination thereof. Whenever a user attempts to requests a resource from the Web
with a Web filter in place, the filter will first determine the rating of the requested re-
source (e.g. through direct content analysis in real-time, or a lookup of pre-computed
ratings against a database). Then, depending on the defined policy, the filter will decide

2Phishing is the criminally fraudulent process of attempting to steal sensitive information such as pass-
word or credit card details from users by masquerading as a trustworthy entity in an electronic com-
munication. For instance, a criminal could send a fake email to a user asking for his bank account
credentials, or similarly set up a fake Web site that visually resembles the user’s online banking service
in order to trick him to enter his username and password.
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whether to grant or deny access to the resource, which in the latter case is implemented
through the filtering mechanism.

Traditionally, we can distinguish between two general approaches to Web filtering,
which can also be combined for increased effect. They mainly differ in how the rating
of resources is accomplished. In the following sections, we describe these approaches
and characterize their strengths and weaknesses.

7.1.1 Filtering based on Ratings by Humans

The first approach to Web filtering relies on human judgements about Web resources,
and as such resembles rating systems such as MPAA3 for movies or ESRB4 for com-
puter software and games. Similar to the general Web taxonomy of the Open Directory
Project (see Section 3.1.2), resources are manually rated according to a predefined clas-
sification scheme, which can range from simple binary classification to comprehensive
taxonomies. These ratings can then be exploited by Web users through compatible soft-
ware applications in order to grant or deny access to resources on the Web.

Rating by Web Authors

Most of the existing manual rating systems are voluntary and not legally binding. They
focus on the authors and publishers of Web resources, who can use these rating systems
to manually classify their content with a common description framework and add rat-
ing information in the form of special metadata to their Web resources.

Arguably, the most prominent manual rating framework is developed and main-
tained by the Internet Content Rating Association (ICRA)5. ICRA was established in 1999
as an independent non-profit organization by a group of international Internet compa-
nies and associations such as AOL, British Telecom, Microsoft and Verizon. It has since
been supported by the European Commission’s Safer Internet Programme6 and has
also participated in several EC-funded projects in the fields of Internet security. Its rat-
ing framework has initially been based on the PICS standard7 of the World Wide Web
Consortium [JKR+99] but the current framework also supports RDF8. The cornerstone
of ICRA is the ICRA vocabulary9 – i.e. its classification scheme – which defines a set of
descriptors for classifying and rating online content. The vocabulary covers topics such

3Motion Picture Association of America, http://www.mpaa.org/, last retrieved on March 01, 2010.
4Entertainment Software Rating Board, http://www.esrb.org/, last retrieved on March 01, 2010.
5ICRA, http://www.fosi.org/icra/, last retrieved on March 01, 2010.
6Safer Internet Programme of the European Commission, http://ec.europa.eu/saferinternet,

last retrieved on March 01, 2010.
7Platform for Internet Content Selection, http://www.w3.org/PICS/, last retrieved on March 01,

2010. Recently, PICS has been officially superseded by POWDER, the RDF-based Protocol for Web
Description Resources, available at http://www.w3.org/2007/powder/. Most interestingly, the
POWDER specification also includes the possibility to add “free-text tags” to resources (http://www.
w3.org/TR/powder-dr/#tags) – a tribute to the success of folksonomies?

8Resource Description Framework (RDF) is a standard model for data interchange on the Web. A description
is available at http://www.w3.org/RDF/, last retrieved on March 01, 2010.

9ICRA vocabulary, http://www.icra.org/vocabulary/, last retrieved on March 01, 2010.
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as “nudity”, “violence”, “language”, and “potentially harmful activities”. A selection
of ICRA descriptors is given in Table 7.1. Listing 7.1 shows an exemplary ICRA rating
which is embedded as HTML metadata into a Web document, with the referenced RDF
file presented in Appendix A. A popular client application that supports ICRA ratings
is Microsoft’s Internet Explorer: The Web browser ships with a Content Advisor feature
that can be configured to filter access to Web resources based on ICRA ratings.

Descriptor Category Meaning
na 1 Nudity Exposed breasts
nc 1 Nudity Visible genitals
nz 1 Nudity No nudity
sd 1 Sexual Material Explicit sexual language
se 1 Sexual Material Erections/explicit sexual acts
vb 1 Violence Injury to human beings
vi 1 Violence Torture or killing of animals
lb 1 Language Profanity or swearing
ca 1 User-generated content User-generated content such as chat

rooms and message boards (moderated)

Table 7.1: Selected ICRA descriptors for rating Internet content.

<link rel="meta" href="http://www.example.com/labels.rdf" type="application/
rdf+xml" title="ICRA labels" />

<meta http-equiv="pics-Label" content=’(pics-1.1 "http://www.icra.org/pics/
vocabularyv03/" l gen true for "http://example.com" r (n 3 s 3 v 3 l 3 oa
2 ob 2 oc 2 od 2 oe 2 of 2 og 2 oh 2 c 3) gen true for "http://www.

example.com" r (n 3 s 3 v 3 l 3 oa 2 ob 2 oc 2 od 2 oe 2 of 2 og 2 oh 2 c
3))’ />

Listing 7.1: An exemplary ICRA rating.
In this example, the Web site http://www.example.com/ is rated as
depicting exposed breasts, bare buttocks and visible genitals. Other types of
objectionable content may be, but are not known to be, present. This HTML
snippet must be included in <HEAD> section of each page on the Web site.
The referenced RDF file labels.rdf is shown in Appendix A.

Such rating systems for Web resources sound promising in theory. Obviously, the
availability of manual ratings could make the filtering task per se rather trivial and the-
oretically more reliable than automated methods by machines. However, the viability
and success of these rating systems depend heavily two factors: Firstly, the actual usage
and resource coverage of these systems and, secondly, the accuracy and trustworthiness
of rating information. In a previous research work, we conducted the – to the best of
our knowledge – first empirical study of Internet content rating systems [NM05]. By
creating and analyzing a data set of 152,617 Web documents, we showed that the actual
usage and coverage of these systems is at best marginal – only 0.6% of the analyzed
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Web documents provided syntactically correct labels. For estimating the accuracy and
trustworthiness of ratings, i.e. their “semantic” correctness, we manually analyzed a
random sample of 5,000 Web documents from the original data set and verified their
ratings. We identified discrepancies between ratings and actual content in 18.5% of the
cases, thus further lowering the usefulness of these ratings in a real-world scenario.
Our results show that the performance of a Web filter based on such rating systems
would in practice only be slightly better than the two extremes of a) not using a filter at
all, or b) unconditionally blocking access to any resource on the Web.

Rating by Third Parties

An alternative to manual rating systems as previously described are services offered by
third parties. Internet service providers (ISP), for instance, often provide Web filtering
services for their subscribers, and IT security vendors offer commercial whitelists and
blacklists of Web resources to their customers. Examples of such third-party services are
Parental Controls by AOL (US)10 and Child Protection Software by T-Online (Germany)11.

If public information about the actual implementation of these services is available,
the documentation often refers to the use of manual classification approaches or dedi-
cated teams of human experts for classifying and rating Web resources. However, this
kind of manual processing will hardly manage to cope with the rapid growth of the
Internet, the increasing number of new Web documents and – not to forget – changes
to existing ones. Another common drawback in practice is a lack of filter granular-
ity. Instead of rating on a per-document basis, e.g. http://hostingprovider.
com/customer01/bad-page.html, ratings are often just assigned to second-level
domains (here: http://hostingprovider.com/). In such cases, a single bad apple
ruins the whole basket: Instead of blocking access to a single “bad” Web resource pub-
lished by one customer, the hosting provider and all its customers may be subject to
filtering.

In addition to these practical problems, there are also conceptual problems with man-
ual rating approaches: Firstly, differences in the perception and interpretation of con-

10AOL Parental Controls, http://parentalcontrols.aol.com/, last retrieved on March 01, 2010.
11“T-Home Kinderschutz Software”, http://service.t-online.de/kinderschutz-software/

id_12727562/, last retrieved on March 01, 2010. The current version of the software supports ICRA
content ratings. The software documentation explains (freely translated) that all T-Online Web pages
have been rated according to ICRA. Anecdotally, a quick test in December 2009 conducted by the
author of this thesis revealed that this statement is, unfortunately, false. For example, the celebrity
and entertainment section of T-Online at http://www.vip-spotlight.t-online.de/ showed
pictures of a so-called “sexy shooting” of US actress Lindsay Lohan. The ICRA rating – last updated
four years ago in December 2005 – of the Web document specified “no nudity, no sexual material, no
potentially offensive language”. However, the document in fact showed an undressed Lohan lying
on a bed in the arms of a male partner in what most people would describe as “Obscured or implied
sexual acts” in the ICRA vocabulary. The same Web document also showed a featured video of US
actress Pamela Anderson as a so-called “sexy genie” in a corresponding outfit. The video of Anderson
also started with an advertisement of Miami Playboy, a new perfume by Playboy company. In short,
even T-Online as a commercial provider of child protection services does or did not adhere to its own
standards with regard to content rating.
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tent may result in different ratings of Web resources between human raters, similar to
the scenario of manual subject indexing discussed in Section 2.3.1. As described in stud-
ies such as [GSF02] and our findings in Chapter 4, people often disagree on how a Web
resource “should” be rated due to a variety of factors such as differences in cultural,
familial, educational and religious backgrounds. Therefore, a single rating of a Web
resource will most likely not match the opinions of all involved parties, and any “one
size fits all” approach will most likely fail in practice. Another issue and often highly
debated point is that both rating by Web authors and rating by third parties inherently
do not reflect the opinion of end users – the latter are often not involved in the filtering
process and thus complain about lack of transparency and express their desire for par-
ticipation [DPRZ08]. On a political level, rating and filtering “on behalf of the user” by
third parties such as Internet service providers, governments or other institutions may
also be perceived by end users as censorship and paternalism [OI05, DPRZ08].

7.1.2 Filtering based on Ratings by Machines

The second approach to Web filtering is based on automated analysis and rating by
machines. The advantage of automated techniques is that they are better suited to cope
with the large scale and rapid growth of the Web. A plethora of algorithms are available
for Web filtering tasks: from simple keyword filtering of textual content, i.e. blocking a
Web document if it contains certain terms, to content recognition in images [WWG05,
KLC06, RJB06, LKCC07, DPN08] and videos [JUB09], and to specialized techniques and
sophisticated machine learning algorithms such as Support Vector Machines or neural
networks [NNMF06, KFJ06, KJF+06, F9̈9, CDI98, WCP07].

However, automated rating and filtering Web content by algorithms faces several
challenges: Firstly, it is often difficult to automatically extract information from Web
documents because they may contain lots of different content types including images,
videos, Java applets or Adobe’s Flash and Flex technologies. With the advent of the
Social Web, highly interactive Web sites also increasingly employ techniques such as
AJAX12, which further complicate automated analysis due to Web documents chang-
ing and updating dynamically according to a user’s interactions with the documents13.
While it is easy for humans to analyze and understand such content, it is a much harder
task for algorithms even with modern processing power. For example, image process-
ing algorithms may be able to identify human faces or nudity in images with a certain
accuracy, but such techniques are often restricted to very specific problem domains14

and are rather computationally expensive [FFB96, JR02, RJB06, Sti06]. Secondly, results
of machine learning algorithms in particular depend heavily on the quantity and qual-
ity of training input, and training input varies with a user’s individual preferences and
characteristics. An algorithm for binary classification, for instance, will not yield opti-

12Asynchronous JavaScript and XML (AJAX).
13This development creates challenges also in other domains. For example, search engines face the same

problems when trying to crawl and index such “rich” Web documents [WG07].
14Anecdotally, there are even specialized “adult content recognition” methods for the detection of nipples

in photos [WLWH10].
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mal results if it is not trained with a sufficient number of samples of both classes, even
though tricks such as PEBL [YHC02, YHC04] may help to a certain extent.

7.2 Folksonomy-driven Web Filtering

We have exploited the characteristics of folksonomies for the purpose of Web search
personalization in Chapter 6 in order to facilitate the retrieval of resources on the Web.
In the following sections, we investigate how collaborative tagging and folksonomies
can be leveraged for preventing access to Web resources. Based on the recent scien-
tific findings on Web document classification with folksonomies described in research
works such as [YLMH09, BS08, ZMF09] and in the previous chapters of this thesis, we
argue that an alternative approach to Web filtering would be to harness the concepts of
collaborative tagging and folksonomies in order to create a user-driven filtering appli-
cation of the Web.

Firstly, folksonomies are very popular among Web users and have been shown to
cover already a considerable fraction of resources on the Web. For example, 48.1% and
17.8% of Web documents in our experimental data sets CABS120k08 and DMOZ100k06,
respectively, were tagged by users, which is a significantly higher percentage than we
have observed for existing rating systems such as ICRA (cf. Section 7.1.1). Secondly,
users particularly employ tags for classification purposes, i.e. categorization of Web
documents, and it has been found that these tag assignments are generally very accu-
rate descriptions of the annotated resources [HKGM08, CSB+07]. Lastly, recent studies
[ZMF09] show that classifiers based on folksonomy data can achieve even higher ac-
curacy than content-based analyses. All these findings provide strong support for the
applicability of folksonomies to the domain of Web filtering.

Compared to the traditional approaches presented previously, folksonomy-driven
Web filtering leverages the most flexible and most powerful content processor available
– the human brain – and is able to connect a multitude of participants via a community
network. The first aspect helps to properly understand and rate even rich Web content
such as images and videos, and overcomes the limitations of automated approaches
to analyze such content. The second aspect helps to scale much better with the rapid
growth of the Web than existing manual approaches as discussed in Section 7.1.1. Fur-
thermore, folksonomy-driven Web filtering integrates users into the rating and filtering
process, thus enabling active participation of users and increasing the transparency of
such an approach. It also addresses the conflict of interest and the problem of different
perceptions and interpretations when rating Web content: In our approach, the raters
and the readers of a Web document are the same persons.

In the following sections, we describe how such an approach of folksonomy-driven
Web filtering can be implemented in practice, and present a case study of a working
prototype called TaggyBear.
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7.3 TaggyBear: A Case Study

In this section, we describe the design and architecture of the folksonomy-driven Web
filtering service TaggyBear, which we have developed as part of the research project
with our industrial partner SES ASTRA S.A. The goal of TaggyBear is to provide a
user-centric alternative to traditional Web filtering approaches. Its objective is the im-
plementation of a technical platform that enables end users to protect themselves from
malicious, objectionable or otherwise harmful content according to their personal pref-
erences, and let them actively participate in the filtering process.

Similar to existing social bookmarking services such as Delicious, TaggyBear allows
users to bookmark and tag Web resources. Seen in this way, TaggyBear can be used
for normal tasks such as storing a user’s personal bookmark collection (i.e. his person-
omy Pu) and recommending interesting Web resources to friends. However, the same
data is also leveraged to create new services which go beyond the standard scheme of
collaborative tagging, namely Web filtering. With regard to Web filtering, TaggyBear
leverages the “wisdom of the crowd” in the spirit of similar community projects such
as Wikipedia or PhishTank15. Firstly, TaggyBear allows users to collectively submit rat-
ings of Web resources to the system, which are subsequently analyzed and aggregated
for the purpose of Web filtering. Secondly, such rating information can be queried
from TaggyBear. A user can specify which content categories – derived from tags –
she or he personally deems objectionable or unwanted. Then, for each Web resource
requested by the user, client applications such as the TaggyBear browser add-on can
query the system for the corresponding rating information, and may grant or block ac-
cess to the requested resource accordingly. For example, Figure 7.1 shows a screenshot
of the TaggyBear browser add-on blocking access to an objectionable Web site because
the majority of users have rated it as pornographic.

It is important to note that any filtering of Web resources in this scenario is performed
on the client side. The technical platform of TaggyBear only provides the necessary rating
information on request – it’s up to the user and his client application to decide how this
information should be used.16 This approach is very different from current server-
side filtering where, for example, access to Web resources by users is blocked by their
Internet service providers. Hence, TaggyBear acts as a kind of social “overlay” of the
Web, and represents a more democratic approach to Web filtering.

In the following sections, we will focus our description of TaggyBear on its Web fil-
tering component, i.e. we will not discuss other system components such as user man-
agement, authentication, browsing its Web site, or system administration.

15PhishTank, http://www.phishtank.com/, is a community-based anti-phishing service. Users can
submit the URLs of suspected phishing Web sites, and vote on whether a submission is truly a phishing
site or not. Last retrieved on March 01, 2010.

16For example, a client software for end users should give full control to its users. In a school environment
however, the network administrator might want to enforce a global filtering policy, and interface a
central Web proxy server with TaggyBear.
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Figure 7.1: TaggyBear browser add-on. In this screenshot, the browser add-on has
blocked access to the Web site PicHunter.com because a) the majority of
users have rated it as pornographic, and b) the user configured the add-
on to block access to any pornographic Web site. The browser add-on is
described in Section 7.3.4.

7.3.1 Prerequisites and System Requirements

Prerequisites

Due to the power-law usage patterns of folksonomies (see Section 2.4.4), we can make
the following general assumption:

Assumption: A user rates only a small subset of all resources within a folks-
onomy, i.e. |Ru| � |R|.

This assumption has three consequences for the design and anatomy of the Taggy-
Bear system. Firstly, we can expect that most resources for which a user requests rat-
ing information from TaggyBear are not in his personomy Pu. This means that most
queries for rating information will not return any individual user ratings. Secondly, we
can expect that a user u is significantly more likely to query ratings from TaggyBear
when browsing the Web than he is to submit such information himself. The system will
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therefore have a higher number of read operations than write operations. Thirdly, we
can expect that most information about rated Web resources, i.e. r ∈ R, was (collec-
tively) contributed by users other than the one requesting the information. This means
that most rating information returned from the system will be derived from the com-
munity’s rating activities.

System Requirements

Several requirements must be met in order to implement a folksonomy-driven ap-
proach to Web filtering. In this section, we describe the main requirements of TaggyBear
with regard to Web filtering.

On the functional side, the basic requirement is that users may query and submit
ratings of Web resources to the system. Additionally, the system should be able to
distinguish between a user’s individual rating and the community rating of a Web re-
source, so that a user’s individual opinion can be properly accounted for even when
it diverges from the opinions of other users. Furthermore, we have seen in Section 2.6
that folksonomies are often the target of spammers. A system rating should therefore
be integrated to serve as a manual moderator function for hardening the system against
abuse and spam, e.g. to protect against rating attacks that would result in unintention-
ally blocking access to targeted Web sites. However, it should be up to the user to
decide which type of rating should take precedence over the other.

On the technical side, a very important requirement is the lookup performance for
querying rating information from the system. As we have described in the previous sec-
tion, most interactions with TaggyBear will be lookup operations for retrieving rating
information from the system17. Client software such as the TaggyBear browser add-on
(see Section 7.3.4) will direct a large and steady number of queries towards the service.
Whenever a user visits a new Web document, the add-on will trigger a request for rat-
ing information. Particularly, the response times of lookup operations must be very fast
so as not to affect the user experience when browsing the Web. The empirical usability
guidelines for response times of Web services are described by Nielsen [Nie99], who
states that 0.1 seconds (100 ms) is the ideal response time. In this case, the user does not
sense any interruption. One second (1,000 ms) is the highest acceptable response time,
and response times above one second interrupt the user experience. Hence, we target
for a response time of lookups faster than 100 ms.

Furthermore, users expect that any modifications to their personal data, particularly
their personomies Pu, take effect immediately. This means that the system should al-
low for real-time or near real-time access and updates to individual user data, which
includes user ratings. Lastly, TaggyBear should be able to analyze and aggregate indi-
vidual ratings of users into community ratings at a performance that meets real-world
demands. In their study of Delicious, which we can use as a reference system, Wet-
zker et al. [WZB08] estimate about 7.5 million posts (i.e. ratings) submitted to Delicious

17This scenario also includes users of TaggyBear that are not registered in the system, i.e. users without
user accounts. In this case, only community and system ratings may be retrieved from TaggyBear. See
Section 7.3.2 for more information about the different types of ratings in TaggyBear.
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in one month. Hence, TaggyBear should be able to process such a volume of data in
reasonable time.

We start our description of the TaggyBear system with an outline of its data model,
because the data model has a strong influence on the technical implementation of Tag-
gyBear. Then, we continue with the discussion of the actual system components.

7.3.2 Data Model

The basic requirement of TaggyBear is that users may query and submit ratings of Web
resources to the system. In this section, we outline the data model and structure of
these ratings. Particularly, we describe how users can submit ratings of Web resources
through folksonomies in the scenario of Web filtering, i.e. how tagging can be trans-
formed to rating of Web resources (Section 7.3.2). We also describe the different types
of rating information that can be queried from TaggyBear on request (Section 7.3.2).

From Tagging to Rating

The concept of tagging allows users to conveniently annotate Web resources. Follow-
ing our argumentation in Section 6.3 about the mapping of tag assignments to a topic
space for classification purposes, we can similarly consider a user’s tag assignments
of a resource as his classification and thus his rating of the resource in the scenario
of Web filtering. However, there is a drawback to the standard model of tagging in
this context (cf. [RP97]): either tag assignments exist, or they don’t. What is missing
is a straight-forward way for users to explicitly express non-relation of tags and doc-
uments or, generally, to provide negative rating feedback. A community-based Web
filtering approach needs such a feature for allowing users to disagree with each other.
If, for example, one user tags (and thus rates) a Web document as pornography, it
should be possible for other users to express their objections to this user’s rating, i.e. to
voice their opinion “this Web document is not pornographic”. We have also observed
from test users that it is often easier and quicker to use such negations in the context of
Web filtering: “I am unsure what this document is about, but I know for sure what it is
not about”. In addition, it allows for better contextualization, and rating systems such
as ICRA include veto-type descriptors for this very reason. These descriptors can be
used to denote that a Web document shows pictures of a naked woman but, for exam-
ple, in a medical and thus non-pornographic context. Hence, to truly use collaborative
tagging for the scenario of Web filtering and rating Web documents, a voting element
must be integrated into the standard model of tagging.

In Section 2.2, we have formally defined the standard model of folksonomies and
collaborative tagging. For the purpose of Web filtering, we follow the related ideas of
Gruber [Gru07] and Hotho et al. [HJSS06b, HJSS06a], and add a simple but effective ex-
tension to this model that integrates a voting feature but is at the same time backwards
compatible to the standard model. The extended model of a rating-enabled folkson-
omy F ∗ is shown in Definition 7.3-1. Other definitions such as a user’s rating-enabled
personomy P∗u are adapted accordingly.
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Definition 7.3-1 (Rating-enabled Folksonomy). A rating-enabled folksonomy is a quin-
tuple F ∗ := (U , T ,V ,R,Y∗), where U , T , V R are finite sets whose elements are called
users, tags, tag votes and resources, respectively. Y∗ is a quaternary relation between these
sets, i.e. Y∗ ⊆ U × T × V ×R, called ratings.

As can be seen in the definition, the only addition to the standard model is the vote
set V . A tuple (u, t, v, r) represents the rating y that user u rated resource r with tag t
and tag vote v. In our implementation, we define the vote set V := {0, 1}, and use a
vote value of 1 to denote a positive relation of tag and resource (“is about”) and a value
of 0 to denote a negative relation (“is not about”):18

vote(t, r) :=

{
1, if resource r is about topic t
0, if resource r is not about topic t

�� ��7.1

With regard to the backwards compatibility to the standard model of folksonomies,
we consider a default value of 1 (“is about”) when the vote information is missing.
This enables us, for example, to readily use data from existing collaborative tagging
systems (e.g. by importing a user’s personomy Pu). With regard to the syntax of tag-
ging, most collaborative tagging systems let users specify tag assignments as space- or
comma-delimited lists of words via their user interfaces (see screenshot in Figure 3.1).
Integrating tag votes into this popular scheme is very easy: Prefixing a tag with a minus
sign “-” is defined as a negative vote (e.g. -pornography), whereas in any other case
the tag vote is considered to be positive.

In summary, we have enhanced the standard model of folksonomies and collabora-
tive tagging with a voting element, with which we can transform tagging to rating of
Web resources. The enhanced model is backwards compatible, and does not require
a change of tagging habits on the users’ side. We believe that the latter aspect is very
important in practice because ease of use has been found to be a critical success factor
of folksonomies (cf. Chapter 2).

Rating Types

Following the system requirements, TaggyBear may return up to three different types
of ratings – if available – for a Web resource r:

• the user rating

• the community rating

• the system rating

18The video sharing service and collaborative tagging system YouTube, for example, recently moved from
5-stars ratings to simple like/dislike ratings [Raj09] because most of their users focused on assigning
either 1 star or 5 stars to a video. This indicates that a binary vote scheme can also be effective for
collaborative rating in practice.
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These ratings correspond to the opinions of the individual user, the community of
users as a whole, and the system operators of TaggyBear, respectively, on how the re-
source should be rated. Since these judgements about a resource can diverge, all three
rating types are returned by TaggyBear, and their order of preference is decided accord-
ing to the user’s preferences specified in client applications (see the browser add-on de-
scribed in Section 7.3.4). It should be noted that the distinction into these three different
rating types is also important for the system design as we will see later.

For convenience, we use the singular “rating” to refer to the set of a user’s ratings of
the same Web resource, with similar notions for community ratings and system ratings.
The terms “rating” and “post” (cf. Section 2.2) are thus equivalent for the context of this
chapter.

The user rating is the user’s individual rating of a resource r, and is thus derived from
his personomy P∗u . When user u queries his personal rating of r from TaggyBear for fil-
tering purposes, the quadruples (u, t, v, r) are transformed to a list of (t, v) pairs. For the
remainder of this chapter, we write such ratings as tag:vote pairs, e.g. research:1
for (research, 1). With regard to the response times of lookup operations, an important
characteristic of user ratings is that they must be queried separately for each individ-
ual user, i.e. user ratings do not benefit much from optimization strategies such as
server-side caching. Hence, they are comparatively costly to retrieve from the system.
In Section 7.3.4, we describe how client-side optimizations can mitigate this problem in
practice.

The community rating is the aggregation of all user ratings of the resource, i.e. the
restriction of F ∗ to r. When the community rating of a resource is requested from
Taggybear, this aggregation of quadruples (ui, t, v, r) is returned as a list of triples
(t, vpos(t, r), vtotal(t, r)), where vpos(t, r) and vtotal(t, r) denote the number of positive19

and total20 votes, respectively, for tag t. This data can be used for calculations such as
the percentage of positive votes per tag, so that client applications can be more flexible
with regard to the policy and decision-making process of Web filtering (e.g. “Con-
sider the community vote for a particular tag to be positive when more than 50% of
users voted positively, but only if at least 5 users rated the resource.”). For the re-
mainder of this chapter, we write such ratings as tag:pos:total triples; for exam-
ple, science:66:72 means that 66 of 72 users voted positively for the tag science.
With regard to the response times of lookup operations, community ratings of the same
resource do not vary across different users. Hence, they benefit significantly from opti-
mization strategies such as pre-computation and server-side caching.

The system rating is a special rating provided by the TaggyBear operators when and
where needed, and is returned in the same format as user ratings. It is used to harden
the service against spam and abuse, and serves as the manual moderator function of
TaggyBear by providing an operator-managed “whitelist” and “blacklist” of Web re-

19The number of positive votes for tag t of a resource r is defined as vpos(t, r) := |{(ui, tj, v, rk) ∈ Y∗|tj =
t ∧ v = 1∧ rk = r}|.

20The total number votes for tag t of a resource r is defined as vtotal(t, r) := |{(ui, tj, v, rk) ∈ Y∗|tj =
t ∧ rk = r}|.
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sources similar to services such as Google Safe Browsing21. However, a client software
may chose not to respect the system rating at all, so the system rating is in fact a “vol-
untary” moderation feature from a user’s perspective and not a hidden type of cen-
sorship. With regard to the response times of lookup operations, system ratings of the
same resource do not vary across different users. Hence, optimization strategies such
as pre-computation and server-side caching can be readily employed.

The three rating types are illustrated in Figure 7.2. To give an impression of how such
ratings look in practice, consider the exemplary rating information for the homepage22

of the Hasso Plattner Institute shown in Table 7.2.

Figure 7.2: Rating types in TaggyBear. The data model for ratings is closely related
to the model of broad folksonomies shown illustrated in Figure 2.3. In this
example, the individual ratings of users U1, U2 and U3 are aggregated into
a single community rating of the resource R1. The special system rating is
shown at the bottom of the figure.

7.3.3 System Overview

Following the requirements outlined in Section 7.3.1, the TaggyBear system is separated
into two complimentary parts. Firstly, there is a “synchronous” part, which is respon-
sible for handling user ratings. Secondly, there is an “asynchronous” part, which is
responsible for handling community ratings and system ratings. This separation is partly

21Google Safe Browsing, http://code.google.com/apis/safebrowsing/, last retrieved on March
01, 2010.

22Hasso Plattner Institute, http://www.hpi.uni-potsdam.de/.
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user rating
research:1, science:1, weblab:1, phd:1, hpi:1, porn:0
community rating
hpi:56:56, research:42:42, germany:26:31, ..., porn:0:1
system rating
(none)

Table 7.2: Exemplary ratings for the homepage of the Hasso Plattner Institute. Here,
26 out of 31 users voted positively for the tag “germany”. A system rating is
not available in this example.

due to the different characteristics of the three rating types, namely that community rat-
ings and system ratings can benefit from server-side optimization techniques such as
caching, whereas user ratings cannot to the same extent. Additional reasons are given
in the explanations described in the following sections.

An overview of the TaggyBear system is shown in Figure 7.3. For the sake of read-
ability, we omitted some technical components such as reverse proxies and caches. The
Linux-based server infrastructure consists of six main components as follows, all of
which are or are based on free and open source software:

• HTTP server: Nginx23.

• Application server: Pylons24.

• Data stores: MySQL Community Server25, Tokyo Cabinet and Tokyo Tyrant26.

• Message buffer: Pylog (Python logger), a custom development based on Twisted27.

• Distributed computing cluster for data aggregation and analysis: Hadoop28.

• Client application: Add-on for the Web browser Mozilla Firefox29.

With regard to the synchronous part, TaggyBear provides users with a real-time in-
terface to their individual ratings. Particularly, there is no delay for adding, updating
or deleting user ratings as is the case for community and system ratings. In addition,
flexibility with regard to future feature additions to TaggyBear was an important cri-
terion for us. Hence, we chose a relational database management system (RDBMS) as
a data store for this type of data, namely the MySQL Community Server. It should be

23Nginx, http://nginx.net/, last retrieved on March 01, 2010.
24Pylons Web framework, http://www.pylonshq.com/, last retrieved on March 01, 2010.
25MySQL Community Server, http://www.mysql.com/, last retrieved on March 01, 2010.
26Tokyo Cabinet/Tyrant, http://1978th.net/tokyocabinet/, last retrieved on March 01, 2010.
27Twisted, http://twistedmatrix.com/, last retrieved on March 01, 2010.
28Hadoop, http://hadoop.apache.org/, last retrieved on March 01, 2010.
29Mozilla Firefox, http://www.mozilla.org/, last retrieved on March 01, 2010.
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Figure 7.3: System overview of TaggyBear. For readability, we have omitted caching
components and do not show multiple instances of components such as ap-
plication servers separately.

noted that the RDBMS is only used for serving a user’s personal data but not for data
aggregation or the results thereof.

The asynchronous part of TaggyBear is responsible for handling community ratings
and system ratings. Next to managing the data store from which users can query these
ratings, the asynchronous part performs data analysis and data aggregation in a three-
step staging process to populate and update this data store. In the first step, user rat-
ings submitted to TaggyBear are buffered for batch processing. In the second step, the
buffered data is analyzed and aggregated into community ratings. In the last step, the
data store for community ratings is updated with the aggregated information. System
ratings are handled similarly.

More precisely, the idea is to temporarily store any incoming user ratings in a so-
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called message buffer30 (in addition to permanently storing them directly in the RDBMS
for the individual user), and periodically process this message buffer through batch jobs
in order to aggregate user ratings into community ratings. The advantage is that the
RDBMS does not need to be accessed for data analysis and data aggregation, which sig-
nificantly reduces system load and computational requirements for the RDBMS31. The
staging setup implies that there is a certain delay before newly submitted information
is reflected in the community and system ratings that can be queried from the system.
However, opting for such a strategy of eventual consistency enables us to optimize the
system for scalability of data aggregation.

Community and system ratings are queried from a data store that must be very ef-
ficient with regard to lookup operations. Here, the flexibility of query statements of a
full-fledged RDBMS with features such as JOIN operations is not needed. We therefore
chose a hash table as the data store for community and system ratings, because this
key-value data structure allows for constant-time O(1) lookups on average [CLRS01].
We use the hash table implementation of Tokyo Cabinet and its companion Tokyo Tyrant
for this task. Tokyo Cabinet is the successor of the well-known QDBM library32, and
provides the actual data store functionality. Tokyo Tyrant adds a network interface to
Tokyo Cabinet so that the hash table can be accessed remotely from distributed ma-
chines.

For data aggregation and analysis, we selected the Hadoop framework, which imple-
ments the concepts of Google’s patented MapReduce framework [DG04] and allows for
a distributed, parallel execution of programs on clusters of commodity hardware. It
is a popular data processing tool that is used by companies such as Adobe, Amazon,
Facebook, Google, and IBM. For example, it is used for powering the Yahoo! search
engine [Bal08]. Hadoop also runs every data processing job on its own fault-tolerant
distributed file system called HDFS, which has been designed and optimized for read-
ing and writing smaller numbers of large files. However, the use case of TaggyBear
is the exact opposite, as updates – in the form of newly submitted user ratings – are
rather large numbers of very small amounts of data. We therefore developed our own
buffering solution called Pylog based on the Twisted networking framework. Buffered
data is then periodically copied to HDFS for further processing.

In the following sections, we describe the TaggyBear system and its components in
greater detail.

30In the case of TaggyBear, messages are user ratings of Web resources.
31For example, one positive effect is that more concurrent requests for personal data can be served by a

single RDBMS instance.
32Quick Database Manager, http://qdbm.sourceforge.net/, last retrieved on March 01, 2010.

QDBM is a library of routines for managing a database. The database is a simple data file contain-
ing records, where each record is a key-value pair. Both binary data and character string can be used
as a key and a value.
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7.3.4 Using TaggyBear

Web Interface – for Humans

Apart from client applications, the main interface and landing point for users is the
TaggyBear Web site. It provides users with a number of features such as managing and
backing up their personomies, subscribing to news feeds of recently posted resources,
or looking up information about Web resources. Figure 7.4 shows a user’s personomy
as seen on the TaggyBear Web site. An excerpt of the tagging and rating information of
a Web resource is illustrated in Figure 7.5.

The Web site and the main application logic of TaggyBear is implemented with the
Python Web framework Pylons, which thus acts as the application server(s) of the sys-
tem. Pylons is a very lightweight and very modular framework: It is easy to use third-
party libraries for database access, templating, caching, request dispatching et cetera.
This is ideal for our intended setup, which involves separated, heterogeneous data
stores and caching layers. The HTTP server Nginx is logically placed in front of Py-
lons for serving static files such as images or CSS files, which reduces server load on
the application servers and cuts down response times.

Application Programming Interface (API) – for Machines

TaggyBear allows programmatic access to its data via a Web-based RESTful API [Fie00].
REST, or Representational State Transfer, refers to a collection of architectural principles
used for transfer of information over the Web, but is now used to describe simple RPC-
based protocols using XML over HTTP [Hen06]. Its benefits – which are part of the
reasons why a lot of Web applications are using REST – include being lightweight and
cacheable (cf. Section 7.3.8), which helps to reduce server load and improves scalability.
Additionally, it uses the inherent HTTP security model, which means that system oper-
ators can restrict certain HTTP methods (e.g. DELETE) to specific URIs through firewall
configurations.

Path prefix for REST API URIs: /api/rest/version
GET /ratings/hash get user, community, and system

ratings for a resource
POST /user/ratings add a new user rating
PUT /user/ratings/hash update a user rating
DELETE /user/ratings/hash delete a user rating

Table 7.3: Excerpt of REST API features of TaggyBear. Web resources are identified by
the MD5 hashes of their URLs. The last three API calls in this listing require
user authentication.

Like the Web interface, the TaggyBear API is implemented with Pylons. The API fea-
tures include adding, modifying, retrieving and deleting ratings from TaggyBear (see
Table 7.3). For example, the browser add-on uses the API to submit new user ratings to
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Figure 7.4: A user’s personomy on the TaggyBear Web site. Posts (ratings) of Web re-
sources are called “tagmarks” in the TaggyBear user interface. Users can
also tag/rate Web resources through the user interface as shown in the up-
per right of the figure. The highlighted post on the left side (black frame)
corresponds to the data entered in the dialogue window.

TaggyBear and to lookup rating information about Web resources. Resources are identi-
fied by the the MD5 hashes of their URLs. MD5 [Riv92] is a widely used cryptographic
hash function with a 128-bit hash value. As an Internet standard, implementations of
MD5 are readily available for a plethora of programming languages including C/C++,
Java, JavaScript, Perl, PHP, Python and Ruby, which helps developers when creating
client applications for TaggyBear.

Client Applications

Since the main purpose of Web filtering is to protect users from unwanted or objection-
able content as they browse the Web, we have developed a TaggyBear browser add-on
for Mozilla Firefox33.

33Mozilla Firefox Web browser, http://www.mozilla.com/firefox/, last retrieved on March 01,
2010.
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Figure 7.5: A Web resource’s details on the TaggyBear Web site. In this zoomed
screenshot, some information about the Web site PicHunter.com is shown.
The user interface highlights the community votes for the two tags
pornography and phishing because these tags have been selected for fil-
tering by the particular user viewing the Web site.

The user can configure the add-on’s filtering features according to his personal pref-
erences, particularly by specifying a) which content categories (tags) should be filtered
and b) the order of preference for the three rating types. By default, the order of prefer-
ences is configured as:

user rating > system rating > community rating
�� ��7.2

Hence, the end user’s own rating is the ultima ratio. The system rating has prece-
dence over the community rating to protect the user against rating attacks on the Tag-
gyBear system. In most cases, however, only community ratings of a resource will be
returned by Taggybear, which is due to our assumption described in Section 7.3.1 and
because the use of system ratings is restricted to prevent specific cases of system abuse.

Whenever a user visits a new Web document through the Web browser, the add-on
queries the TaggyBear API for rating information. When a Web document is blocked,
the add-on obfuscates the document’s content and presents a warning window to the
user, which also informs him why the add-on triggered the protection mechanism as
shown in Figure 7.1. The warning window also provides interface elements to tem-
porarily ignore the warning or to permanently overwrite the filtering decision with the
user’s own, individual rating of the document. The latter effectively allows the user to
create his own whitelist and blacklist of Web resources very easily.

The browser add-on also includes interface elements to create new ratings so that
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users do not need to visit the TaggyBear Web site for doing so. Furthermore, the add-
on provides interface elements to quickly rate and assign Web documents to specific
content categories with a single click (“Porn” and “Not Porn” buttons in Figure 7.1).

Another way to use TaggyBear is to interface it with Web proxy servers such as
Squid34 in a centrally managed network. The proxy servers can be configured to query
TaggyBear for rating information about any requested Web resources and block access
depending on how the community of users have rated these pages.

7.3.5 Data Flows

In this section, we describe the basic data flows for adding user ratings to and retrieving
rating information from TaggyBear, respectively. We only describe the data flows for the
TaggyBear API because the data flows for the Web interface are similar. In Section 7.3.8,
we will discuss how these basic data flows can be further optimized through server-
side and client-side techniques.

Submitting user ratings

The data flow for adding user ratings, i.e. write operations, is shown in Figure 7.6.
When a user submits a new rating through a client application to the API via an HTTP
POST request, the request and its payload is first run through several sanity checks and
input filtering. If it passes these tests, the rating is stored in the user’s personomy P∗u
in the RDBMS, and then submitted to the message buffer (the RDBMS and the message
buffer are described in Section 7.3.6). In this case, the API returns a 200 OK35 HTTP
status code to the client. If it does not pass the test, the API returns an appropriate error
code, for example 403 FORBIDDEN for user authentication failures.

The previously described steps occur synchronously. The processing of user ratings
in the message buffer is performed asynchronously at periodic intervals36, at which the
buffered user ratings are copied to the Hadoop cluster’s distributed file system HDFS.
As described in Section 7.3.7, Hadoop MapReduce jobs will be run to aggregate the
user ratings into community ratings, and the aggregation results will be inserted into
the hash table via Tokyo Tyrant.

Retrieving ratings

The data flow for retrieving rating information, i.e. read operations (lookup), is shown
in Figure 7.7. When a client requests rating information about a Web resource, the
query is routed via the API to the hash table (see Section 7.3.6) which will return any
available community and system ratings. If the request was sent from an authenticated

34Squid is a free and open source caching proxy for the Web supporting HTTP, HTTPS, FTP and other
protocols. It is available at http://www.squid-cache.org/, last retrieved on March 01, 2010.

35The HTTP status codes are defined in RFC 2616 “Hypertext Transfer Protocol – HTTP/1.1”, available at
http://www.ietf.org/rfc/rfc2616.txt, last retrieved on March 01, 2010.

36In our current implementation, this interval is set to 30 minutes.
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Figure 7.6: Data flow for submitting user ratings (write operation). The dashed lines
represent asynchronous tasks that are carried out at a later time. For read-
ability, the HTTP server in front of the API has been omitted because it sim-
ply routes POST requests directly to the API. The resulting delay is negligi-
ble and hardly measurable (<1 ms).

user, the RDBMS is also queried for any available user rating. Finally, the rating results
are returned back to the client.

Figure 7.7 shows that unauthenticated requests – e.g. from a Web proxy server con-
figured to interface with TaggyBear, or from people using TaggyBear without registered
user accounts – will only result in a query against the hash table for retrieving commu-
nity ratings and system ratings. The response to such queries can be adequately cached
because it is indiscriminately valid for any user. For authenticated users, a request will
additionally result in a query against the RDBMS. We describe in Section 7.3.8 how this
lookup process can be further optimized.

7.3.6 Data Storage

In this section, we describe the storage components of TaggyBear. The current setup
consists of three different data stores:

• RDBMS – MySQL Community Server

• Hash table – Tokyo Cabinet/Tokyo Tyrant

• Message buffer – Pylog
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Figure 7.7: Data flow for retrieving ratings (read operation). The dashed lines repre-
sent tasks that are only carried out if the user is signed into TaggyBear.

As we said previously, the main purpose of the RDBMS is to store individual user
data including user ratings, i.e. a user’s personomy P∗u . It maintains a user-resource
index, i.e. an index based on (u, r), to quickly retrieve user u’s rating of a particular
resource r from the data store. On the implementation level, we selected the popular
MySQL database as the RDBMS because it is performant, well-tested and has a strong
support within the developer community. Additionally, it provides load balancing and
high availability features. Since MySQL can be considered as a standard tool for de-
veloping Web services, we do not go into details on how to properly scale MySQL
databases are omitted. Interested readers are kindly referred to excellent works such as
[ZB04, Hen06]. However, we note that an important benefit of our decision to use the
RDBMS only for personal user data is that it enables us to horizontally scale MySQL
databases by partitioning data by users (so-called federation [Hen06]). If, for example
the load of a single-server setup reaches a critical level, we can split the load on the
RDBMS to multiple server machines by migrating data of usernames starting with A-F
to the first server, G-L to the second, and so on.

The hash table is powered by Tokyo Cabinet, and stores community ratings and sys-
tem ratings. It is a key-value store, where in our case the key is the MD5 hash [Riv92]
of the URL of a Web resource, and the value is the tuple of (community rating, system rat-
ing) of the resource. The hash table provides constant-time O(1) lookup operations
on average and O(log n) in the worst case. With regard to write performance, the
hash table implementation of Tokyo Cabinet can store 1 million records in < 1 sec-
onds [Hir10]. This is an important criterion because we need to import large numbers
of community ratings into the hash table after data aggregation. The application Tokyo
Tyrant provides a network interface to Tokyo Cabinet, which we use when querying the
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hash table for community ratings via the application server Pylons (see Section 7.3.5 on
data flows). While there is a certain performance loss when accessing Tokyo Cabinet
databases through Tyrant, it is still more than adequate for our needs. Tyrant also sup-
ports features for scalability and fault tolerance such as replication, update logs and hot
backup.

The message buffer is a special data store as it is only used to buffer incoming user
ratings until they can be processed and aggregated by the Hadoop cluster (see Sec-
tion 7.3.7). Important features for us were, on the one hand, persistent storage of in-
coming messages to prevent data loss in case of system crashes or power outages, and
on the other hand, a lightweight implementation that could easily be understood for
customization and optimization purposes. We intended at first to use an off-the-shelf
message queue for this task but could not find a software implementation that fully
satisfied our needs. At the end, we decided to implement a simple yet efficient mes-
sage buffer ourselves. Pylog, as we call it, is built on top of the Twisted networking
framework for Python. Its only purpose is to accept “messages”, in our case prop-
erly encoded user ratings, from the application server Pylons (e.g. submitted via the
Web interface or the API) and reliably log them to file as quickly as possible. Unlike
a message queue, Pylog does not need to guarantee FIFO37 behavior. Instead, we add
timestamps to messages and subsequently let Hadoop do the sorting of user ratings
during the periodical MapReduce jobs. Whenever it is time to start another data aggre-
gation run, we instruct Pylog to rotate its buffer file. The buffer file is then copied to
the HDFS file system of the Hadoop cluster for processing. We tested the performance
of Pylog on two identical machines with a Xeon E5335 2.0 GHz Quad Core CPU and 4
GB of RAM, running Ubuntu Linux 8.04 Server Edition with the default Linux kernel
2.6.2419-server. The machines were connected by a switched, full duplex Fast Ethernet
network (100 MBps). The average throughput was 14,628 ratings per second, more than
enough for our scenario. If needed, the message buffer can be horizontally scaled by
adding more Pylog instances, and the sum of their buffer files can be jointly copied to
the Hadoop cluster for the next MapReduce jobs.

7.3.7 Data Aggregation

In this section, we describe how individual user ratings are aggregated into joint com-
munity ratings through distributed computing. Since system ratings are almost identi-
cal to user ratings on a technical level, we do not specifically discuss them here.

On the implementation level, we have chosen Hadoop for data aggregation tasks be-
cause it allows for linear scaling in terms of data processing, and it is built for running
on commodity hardware. If more processing power is needed, it is generally sufficient
to just add more machines (“nodes”) to the cluster. Computations on Hadoop clusters
are performed with so-called MapReduce jobs [DG04, Fou10]: A MapReduce job usu-
ally splits the input data into independent chunks which are processed by Map tasks on
different nodes in the cluster in a completely parallel manner. The Hadoop framework

37FIFO is an acronym for First In, First Out.
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sorts the outputs of the maps, which are then piped as input to the Reduce tasks. Typ-
ically both the input and the output of the MapReduce job are stored in the HDFS file
system. The Hadoop framework takes care of scheduling tasks, monitoring them and
re-executes any failed tasks. For more information on Hadoop, the interested reader is
kindly referred to works such as [Whi09, Nol07a].

We implemented the aggregation of user ratings into community ratings through two
MapReduce jobs which are chained together, i.e. the output of the first job is the input
of the second. The purpose of the first MapReduce job is data consolidation: It ana-
lyzes the timestamps of user ratings in the buffer file and merges multiple submissions
or modifications of ratings of the same resource by the same user into a single “update”
user rating. This can easily happen in our setup because using a message buffer can
lead to pending updates, i.e. temporal data inconsistency. The purpose of the second
MapReduce job is the actual aggregation: It combines the ratings of multiple users per
resource into a single “update” community rating. Optionally, we could further ana-
lyze the input data during this step and, for example, filter out known spammers or
promote the ratings of known expert users. It is thus possible to easily integrate the
results of techniques such as SPEAR (see Chapter 5) into TaggyBear.

The total time needed for data aggregation can be approximated by the following
formula:

ttotal = t f s2hd f s(I, U) + tHadoop(I, U) + thd f s2 f s(O, C) + tTokyoTyrant(O, C)
�� ��7.3

where t f s2hd f s(I, N) is the time needed to copy a message buffer file of I bytes con-
taining U user ratings from the local file system to HDFS38; tHadoop(I, U) is the time
needed to aggregate these user ratings through Hadoop MapReduce jobs; thd f s2 f s(O, C)
is the time needed to copy the aggregation output of O bytes containing C community
ratings from HDFS to the local file system; and tTokyoTyrant(O, C) is the time needed to
insert these community ratings into the hash table.

The times for data import and export, t f s2hd f s(I, U) and thd f s2 f s(O, C) are mainly
network-limited, and can be controlled and optimized by proper networking setup.
The time for the actual aggregation via the two described Hadoop MapReduce jobs,
tHadoop(I, U), is influenced by a variety of factors such as the number of Hadoop data
nodes (which serve HDFS data) and tasktracker nodes (which process data) in the clus-
ter, job parameters such as the number of reduce jobs to be run, and other factors such as
the size of intermediate data. Figure 7.8 shows our benchmarking results for a cluster of
four machines connected by a switched, full duplex Fast Ethernet network (100 MBps).
Each machine was equipped with an Intel Xeon E5335 2.0 GHz Quad Core CPU (four
cores), 4 GB of RAM, hardware RAID5 data storage, and was running Ubuntu Linux
8.04 Server Edition with the default Linux kernel 2.6.2419-server. We used Hadoop ver-
sion 0.18.0 released in August 2008 for the benchmark. The results are averaged over
several runs with the slowest and fastest results being removed from the samples.

38This includes the time needed for replicating data chunks to multiple cluster nodes as configured by
Hadoop’s dfs.replication parameter. The default replication value is 3.
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Figure 7.8: Performance results for the aggregation of user ratings into community
ratings through Hadoop MapReduce jobs. The solid black line and the red
dashed line show the ratings processed per second and the rating processed
per second squared, respectively. Note the logarithmic scale of the x-axis.

We observed that the number of ratings aggregated per second increased with num-
ber of input bookmarks. This was mainly due to two reasons. Firstly, there is a rather
fixed overhead for starting and running MapReduce jobs, which can be higher than the
actual time for processing the input data. Secondly, if the input data is not sufficiently
large, less than the total number of cluster nodes may be used for executing the job.
In other words, more cluster nodes are only activated by Hadoop when needed, but if
that happens they will increase total throughput. Still, the time to process 100,000 rat-
ings was less than one minute. At some point, the “acceleration” that Hadoop receives
from increasing amounts of input ratings starts to slow down. In our benchmark, this
inflection point was approximately at 5 million ratings. Most likely, this was caused by
limitations in network I/O, because we found that the cluster nodes could not receive
input data fast enough and ended up idling, waiting for data. We believe that switching
from Fast Ethernet to Gigabit Ethernet (1,000 Mbps) would therefore further improve
the benchmark times. Nonetheless, the experimental results were encouraging: The
cluster aggregated 1 million ratings in about two minutes, and 10 million ratings in less
than ten minutes.

Finally, tTokyoTyrant(O, C) is the time needed to insert or update community ratings in
the hash table through Tokyo Tyrant. A so-called PUT operation is equivalent to adding
or overwriting the rating of a resource in the hash table. We measured 8,372 PUTs/s
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on average on the same hardware when using Tyrant’s Python API.39 Again, this out-
come is more than adequate for our scenario: The estimated number of posts per day
on Delicious is, based on the per-month statistics reported by Wetzker et al. [WZB08],
about 250,000 posts. This amount of posts can be inserted into the hash table in about
30 seconds. If needed, this performance could be further increased by using Tyrant’s
C/C++ API.

In a final experiment, we measured the total time ttotal for processing and aggregating
input data sets of varying sizes. The results are shown in Table 7.4. They provide strong
support for the practical feasibility of the TaggyBear system.

Number of ratings Total time
250,000 3.8 mins

1,000,000 6.7 mins
10,000,000 39.1 mins

Table 7.4: Total data aggregation performance. To put these numbers into relation,
the social bookmarking system Delicious received an estimated number of
250,000 posts (ratings) per day and 7.5 million posts per month, based on the
statistics reported by Wetzker et al. [WZB08].

In summary, we have demonstrated in this section that the performance of TaggyBear
with regard to data analysis and data aggregation meets the system requirements for
real-world scenarios.

7.3.8 Optimization and Data Caching

The performance of TaggyBear, particularly with regard to the data flow of retrieving
rating information from the system (see Section 7.3.5), can be further improved through
server-side and client-side optimizations.

Preventing unnecessary RDBMS Queries

Querying data from the RDBMS is generally more costly than from the lookup-optimized
hash table, and user ratings are therefore less efficient to retrieve than community
and system ratings. This means that unnecessary queries for user ratings should be
avoided. The basic data flow described in Section 7.3.5 shows that a query for user rat-
ings is sent to TaggyBear whenever an authenticated user visits a new Web document.
However, we have explained in Section 7.3.1 that we can generally assume that a user
only rates small subset of all resources within a folksonomy, i.e. |Ru| � |R|. We can
similarly assume that he has rated only a (very) small subset of all resources on the

39Generally, TaggyBear queries the hash table first in order to retrieve the current (i.e. outdated) commu-
nity rating of a particular resource in order to perform correct updates. In this experiment though, we
were more interested in the write speed, i.e. PUTs. The reason is that a write operation is significantly
more expensive than a read operation in our case.
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Web, because folksonomies do not cover the Web fully. The consequence with regard
to TaggyBear is that most queries from authenticated40 users cannot and will not return
any user ratings but the RDBMS will be queried regardless. If, for example, a user visits
1,000 Web documents when browsing the Web, and only 10 of these have been rated
by the user, 990 hits on the RDBMS will be effectively pointless. A server-side caching
strategy can generally not help in this situation because when the user rating of a re-
source is not available in the cache, it does not necessarily mean that the user has not
rated the resource – the rating could simply not be cached yet. A better approach is
to keep client applications informed about which resources have already been rated by
the user, i.e. the set of resources Ru. This allows client applications to only query for
user ratings when there is such information available in the RDBMS. We implemented
such a feature for the TaggyBear browser add-on, which locally stores the list of Web
resources – more precisely, the MD5 hashes of their URLs – that have been rated by
the user. Since a user might use more than one Web browser (e.g. one at home and
one at work), the add-on periodically queries TaggyBear for updated information41, i.e.
whether and which new resources have recently been added to a user’s personomy Pu
and thusRu to ensure consistency between different browsers installations.

Server-side Caching

An important technique that TaggyBear uses to reduce server load and improve scala-
bility is caching. A cache temporarily stores data so that future requests for that data can
be served faster [Hen06]. The setup of TaggyBear employs server-side and client-side
caching at various places, of which the most critical are described in this section.

On the server side, we use memcached42 to cache community ratings and system rat-
ings. Memcached serves as an in-memory cache of data in the hash table, thus lowering
the load on Tokyo Cabinet and Tokyo Tyrant.

Additionally, using memcached has another important benefit. In the TaggyBear sys-
tem overview shown in Figure 7.3.3, an HTTP server (Nginx) is logically placed in front
of the application server (Pylons). On the one hand, the HTTP server Nginx is responsi-
ble for serving static content such as images, icons and CSS files because it can perform
this task significantly faster and more efficient than the application server Pylons. On
the other hand, Nginx can be configured to bypass the application servers for lookup
requests of community and system ratings, and reroute these queries directly to the
cache. In combination with the client-side optimization regarding local copies of Ru

40Non-authenticated users will never hit the RDBMS when querying TaggyBear for rating information.
Hence, the described problem does not exist in their case.

41The MD5 hash of a URL has an uncompressed size of 32 Bytes. The volume of data that needs to be
exchanged during such an update process is therefore quite small even for very active users.

42Memcached, http://memcached.org/, last retrieved on March 01, 2010. It is a free and open source
distributed memory object caching system, generic in nature, but intended for use in speeding up
dynamic Web applications by alleviating database load. On the technical level, memcached is an
in-memory key-value store for small chunks of arbitrary data (e.g. strings, objects) from results of
database calls, API calls, or page rendering. Notable users of memcached include Wikipedia, Face-
book, Google and Yahoo.
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described in the previous section, this means that most queries for rating information
never even hit the application server(s), which further reduces the system load on these
components.

Client-side Caching

For enabling client-side caching, we add ETag headers [FGM+99] to generated Web
pages of TaggyBear where appropriate. ETag only helps if the entire page can be cached,
and it can prove difficult to set up correctly in a load balancing scenario where a client
may request the same content but get a response from different servers on each request
[Hen06]. When used correctly though, ETag allows compatible Web browsers – and
HTTP clients in general – to perform client-side caching of Web pages, thus further
reducing server load.

The TaggyBear browser add-on benefits implicitly from Mozilla Firefox built-in ETag
support. Additionally, the add-on also comes with its own TaggyBear-specific caching
functionality, particularly for API requests. This is needed mainly for properly han-
dling a user’s GUI interactions within Firefox. For example, the add-on must handle
tab switches in Firefox for processing and updating the currently displayed Web page
in the browser (e.g., showing or hiding the warning window in Figure 7.1). Using a
local cache of rating information prevents such user interactions from resulting in un-
necessary queries to the TaggyBear system.

7.3.9 System Performance

In addition to the performance measurements described in the previous sections, we
conducted further experiments to evaluate the system design and anatomy of Taggy-
Bear. In this section, we report the results of a quantitative analysis of the response
time of TaggyBear for lookup operations, i.e. the retrieval of rating information. The
response time is the time passed between the submission of a query by a client applica-
tion and the subsequent reception of the reply.

A variety of parameter combinations could be used for testing the response time.
We decided to focus on the two most relevant scenarios in practice: Firstly, we mea-
sured the response time for an authenticated user who requests all three rating types
at once. This is a costly operation, particularly because the user rating does not benefit
much from server-side caching. Hence, we tested TaggyBear for the scenario of retriev-
ing uncached user ratings in combination with cached community and system ratings.
Secondly, we measured the response time for a user who requests the community and
system rating of a Web resource from cache. This is the most common retrieval scenario,
and should thus be the most important evaluation criterion.

We used the Apache Bench benchmarking tool43, which is part of the popular Apache
HTTP Server project44, for stress-testing TaggyBear. The tool can be configured to gen-

43The documentation of Apache Bench is available at http://httpd.apache.org/docs/2.0/
programs/ab.html, last retrieved on March 01, 2010.

44Apache HTTP Server project, http://httpd.apache.org/, last retrieved on March 01, 2010.

183

http://httpd.apache.org/docs/2.0/programs/ab.html
http://httpd.apache.org/docs/2.0/programs/ab.html
http://httpd.apache.org/


CHAPTER 7. WEB FILTERING

erate various types of data traffic for putting load on Web services. In our experiments,
we simulated two variants: The first variant used Apache Bench to simulate one con-
current user sending 1,000 lookup requests to TaggyBear as fast as possible. This test
can be considered as a baseline for the system performance. The second variant gen-
erated 100 concurrent users who sent a total of 10,000 lookup requests. All tests were
run on a local network45 against a TaggyBear installation consisting of only one in-
stance, respectively, for the HTTP server (Nginx), the application server (Pylons), the
RDBMS (MySQL), the hash table (Tokyo Cabinet/Tyrant) and the in-memory cache
(memcached). Table 7.5 shows the results of our experiments.

Concurrent U, not cached Target
Users Measure C+S, cached C+S, cached Value

1 µ 17 ms 8 ms ≤ 100 ms
σ 5 ms 2 ms

100 µ 195 ms 21 ms ≤ 100 ms
σ 84 ms 6 ms

Table 7.5: Response times for retrieving ratings (read operation). U, C, S denote user
ratings, community ratings and system ratings, respectively. The table shows
the mean response times (µ) including standard deviations (σ). Mean values
in bold font meet the target value specified by the service requirements in
Section 7.3.1.

We observed that TaggyBear responded very fast to lookup requests. It could easily
handle the most common retrieval scenario with a mean response time of 21 ms for
100 concurrent users. As expected, queries which also hit the RDBMS took longer to
process. While the mean response time was still considerably fast with 195 ms, Taggy-
Bear exceeded the targeted response time of 100 ms when stressed with 100 concurrent
users. Still, the result is encouraging considering that the expected percentage of such
queries in relation to the number of total queries is rather small, which means that a
single RDBMS server instance can still serve quite a large number of registered users46.

45Testing on a local network minimizes the impact of network latency on experimental results. Network
latency accounts for the time spent over the network to receive the query from the user plus the time
spent over the network to send the reply to the user. For example, users accessing TaggyBear via slow
network connections would experience slower response times because of the higher latency compared
to users on fast network connections.

46 Generally, three different user types can be distinguished for a system [IBM09]: Registered users make
up the total population of individuals who are registered at the system. They represent the total user
community, and can be active or concurrent at any time. Active users are logged on to the system at
a given time and can send a processing request at any time. For example, users who are viewing the
results returned from a query are active users, although they are not currently stressing the system.
Concurrent users are not only logged on to the system (active), but are sending a request or waiting
for a response. They are the only type of user actually stressing the system at any given time. The
concurrency ratio is defined as the number of concurrent requests at any moment in time that affect
the load on the system. A rule of thumb in estimating the load of a system is that approximately 1%
percent of registered users or 10% of active users will equate to the number of concurrent requests the
system must manage per second [IBM09].

184



7.4. DISCUSSION

In summary, we found that TaggyBear could meet the service requirements for the
most relevant retrieval scenario. It should also be noted that we tested a single-instance
installation of TaggyBear. We have described in the previous sections how the system
has been designed to allow for horizontal scaling, which means that more computing
resources can conveniently be added (e.g. more RDBMS instances) to cope with in-
creasing service load. Hence, we argue that the results provide strong support for the
practical feasibility of the system.

7.4 Discussion

In this chapter, we have proposed an alternative to traditional Web filtering techniques.
The implementation of this alternative, the TaggyBear system, is based on the collective
rating activities of users in folksonomies, and enables users to filter the Web according
to their personal preferences through client-side filtering.

Interestingly, popular Web services such as Delicious have focused on providing
users with tools that allow them to submit information to these services, but leveraging
this information for use cases other than the original scenario (e.g. social bookmarking
for Delicious) appears to be the exception. While we have put the emphasis of this chap-
ter on how to exploit folksonomies and collaborative tagging for Web filtering, there are
additional uses of this kind of user-contributed data. One such approach is to blend our
proposed personalization method described in Chapter 6 with TaggyBear for creating
a service for safer Web search. Figure 7.9 shows how both techniques can be combined
at the example of Google Search. Here, the browser add-on described in Chapter 6 was
extended to query TaggyBear for rating information about Web documents in search
results. It is thus possible to protect users from objectionable or otherwise unwanted
Web resources when performing Web searches as well.

Additionally, we have briefly outlined how TaggyBear can benefit from techniques
such as SPEAR (see Chapter 5) to harden the system against junk input and to improve
overall quality by properly analyzing and understanding folksonomy data. As such,
the data aggregation components described in Section 7.3.7 provide a good starting
ground for tackling practical problems of folksonomies such as spam (cf. Section 2.6).

Finally, it should be noted that any folksonomy- or community-driven approach de-
pends on the actual quantity and quality of user-contributed information. We have
shown in this chapter how a Web filtering service based on folksonomies and collab-
orative tagging can be implemented in practice. However, the eventual success (or
failure) of such an approach can only be empirically verified with a critical mass of par-
ticipants who actively use a system such as TaggyBear and who provide feedback on
its usefulness and reception. Hence, we are looking forward to deploying the described
TaggyBear prototype in a real-world setting and thus opening it to public access.
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Figure 7.9: Protecting users from objectionable search results. In this screenshot, the
search results of a query for “porn” are shown. Any links to pornographic
Web documents have been flagged as potentially unwanted content accord-
ing to the user’s preferences. Non-pornographic documents, on the other
hand, are not affected as can be seen for the news document about “Child-
porn law” at position 4.

7.5 Summary

In this chapter, we have proposed a new approach to Web filtering by exploiting the
concepts of folksonomies and collaborative tagging. We have presented a case study of
a working prototype, TaggyBear, to demonstrate how such an approach can be imple-
mented in practice, and have described and evaluated its system design and anatomy.
Our experiments and performance analyses have shown that TaggyBear can meet the
system requirements for Web filtering. Additionally, the use of such a system is not
restricted to the filtering of Web resources as it also provides the normal features of a
collaborative tagging system due to the close relation between tagging and rating Web
resources. We have also outlined how the system can be combined with our techniques
and results from Chapters 5 (Expertise Ranking) and 6 (Web Search Personalization)
for increased effect. Hence, our results support our hypothesis that the concepts of
folksonomies and collaborative tagging can be exploited for user-driven filtering of the
Web.

With this chapter, we have finished the second part of this thesis, where we have
focused our studies on leveraging folksonomies for Web information retrieval. In the
last part, we will give our conclusions of this thesis based on the analyses and findings
described in this and the previous chapters. We will also discuss the implications and
significance of our research work, and outline possible future research directions.
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Now it is quite clear to me that
there are no solid spheres in the
heavens, and those that have
been devised by the authors to
save the appearances, exist only
in the imagination.

Tycho Brahe (1546–1601)
8

Conclusions and Key Results

The overall goal of this thesis was to analyze Web users and their contributed data
in order to improve the retrieval of information on the Web. The motivation came
from the recent evolution of the Web itself, which has been increasingly used for social
interactions and user collaboration on both local and global dimensions. This devel-
opment has been coined the trend of the Social Web, where online services and Web-
enabled applications facilitate and stimulate user interactions, and where a surge of
user-contributed data such as articles, photos or videos can be observed. In this the-
sis, we have studied social interactions and user collaboration on the Social Web at the
example of folksonomies for the purpose of information retrieval. Folksonomies are
suitable subjects for such a study because they represent a very general form of inter-
actions on the Web by involving the acting subjects on the Web (users), the objects con-
taining information on the Web (Web resources), and metadata about these (tags). The
main objectives of this thesis were to deepen our understanding of the characteristics,
dynamics and hidden semantics of folksonomies, and to explore how this knowledge
can be leveraged to enhance and improve techniques in the research area of Web in-
formation retrieval. On the one hand, we have analyzed and related folksonomies to
other types of Web data and metadata and to Web information retrieval in general. On
the other hand, we have demonstrated how folksonomies can be exploited in practice
by presenting and evaluating new approaches for three different problem scenarios,
namely expertise ranking, personalization of Web search, and Web filtering.

The first part of the thesis started in Chapter 2 with a thorough review of state-of-the-
art research on folksonomies and collaborative tagging. While the concept of collabo-
rative tagging is similar to traditional subject indexing, we showed that it offers users
much more flexibility and benefits for annotating resources, and that it also provides
individual users with incentives to perform these activities collaboratively. We found
studies in the literature to span a wide range of topics, including analyses of user mo-
tivations and functions of tags, the dynamics and usage patterns of folksonomies, cre-
ating recommender systems based on collaborative tagging, and the phenomenon and
impact of spam in folksonomies. While there has been a plethora of research on folk-
sonomies in general, there is a lack of in-depth study of folksonomies in the domain of
Web information retrieval. To conduct such research was the central goal of this thesis.

After presenting in Chapter 3 the major data sources and main experimental data
sets used for the work described in this thesis, we described in Chapter 4 our empirical

189



CHAPTER 8. CONCLUSIONS AND KEY RESULTS

study of the characteristics of folksonomies in the context of Web information retrieval.
We investigated how much and what kind of folksonomy data is available in practice,
and how it compares and relates to other types of data and metadata on the Web such as
the content of Web resources, and metadata provided by the authors of these resources.
We found that folksonomies provide large volumes of (meta)data about Web resources
and that they already cover a considerable fraction of the Web. We also observed that
folksonomies provide new data that is not available through content inspection or link
analysis of Web resources. Additionally, information in folksonomies was found to
be different from other Web metadata types, and seemed to to be particularly suited
for classification tasks in Web information retrieval. These results supported our hy-
pothesis (Hypothesis 1) that user-contributed data in folksonomies provides new, com-
plimentary information about Web resources that is not available through traditional
types of data and metadata on the Web.

In the second part of the thesis, we turned our attention to leveraging the knowl-
edge and experimental results presented in the first part for enhancing and improving
techniques in the domain of Web information retrieval. We investigated the notion of
expertise or “trustworthiness” of users in folksonomies in Chapter 5. Identifying ex-
perts among users has benefits for a wide range of applications such as recommender
systems, resource discovery and social network analysis. We introduced the notion of
implicit endorsement between users in folksonomies via an analysis of the temporal di-
mension of user activity, and conceived two assumptions of experts: Firstly, there exists
a relationship of mutual reinforcements between the expertise of users and the quality
of Web resources. Secondly, experts are also the discoverers of high quality documents.
Based on these ideas, we proposed a graph-based algorithm, SPEAR, for ranking users
according to their expertise. We evaluated SPEAR with experiments based on large sets
of real-world data, and found the algorithm to be effective at identifying expert users
and, at the same time, reducing the negative impact of malicious users in a folksonomy.
These results supported our hypothesis (Hypothesis 2) that the expertise or trustwor-
thiness of users in a folksonomy can be derived from an analysis of their activity and
implicit interactions. We thus showed that an appropriate method such as SPEAR is
able to gain a better understanding of the characteristics of users by analyzing their
collective behavior in folksonomies.

In Chapter 6, we applied folksonomies to the scenario of Web search and investigated
how they can be used for tailoring search results according to the individual interests
of users. We showed that both the topics of Web resources and the interests of users
can be derived from folksonomies, and how this information can be used to construct
profiles of users and resources in a multidimensional topic space. We proposed a new
approach to the personalization of Web search personalization, which is based on the
re-ranking of search results as returned by a traditional search engine according to the
similarity between the profiles of the user and the Web resources. At the example of
the search engine Google and the collaborative tagging system Delicious, we demon-
strated how this personalization approach can be implemented in practice. We also
evaluated the approach with quantitative and qualitative analyses, and found that it is
feasible in practice with regard to the availability of sufficient volumes of folksonomy
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data about Web resources in the scenario of Web search, and that users have perceived
an improvement in the quality of search results compared to the evaluation baseline.
These results supported our hypothesis (Hypothesis 3) that folksonomies provide suffi-
ciently rich information about users and Web resources to allow for the personalization
of Web search.

Lastly, we explored in Chapter 7 how the concepts of collaborative tagging and folk-
sonomies can be exploited for Web filtering. We described how the concept of tagging
can be extended to allow for collaborative rating of resources on the Web, and proposed
a folksonomy-driven alternative to traditional Web filtering approaches. We presented
a case study of a working prototype, TaggyBear, to demonstrate how such the proposed
approach can be implemented in practice, and described and evaluated its system de-
sign and anatomy. Our experiments and performance analyses showed that the Taggy-
Bear system can meet the requirements for the scenario Web filtering. Additionally, we
also discussed how the system can benefit from and be combined with our techniques
and results from Chapters 5 (Expertise Ranking) and 6 (Web Search Personalization)
for increased effect. These results supported our hypothesis (Hypothesis 4) that the
concepts of folksonomies and collaborative tagging can be exploited for user-driven
filtering of the Web.

While we have presented these studies separately in this thesis, we like to emphasize
that they are closely related to and benefit from each other. Folksonomy-driven Web
filtering, for instance, can be used to improve Web search by protecting users from dan-
gerous or unwanted Web resources in search results. Finding experts users, on the other
hand, can be helpful to any technique that leverages user-contributed data, of which
Web search personalization and Web filtering are but two examples. Similarly, the pro-
posed re-ranking technique for the personalization of Web search can also be applied
to other scenarios. For instance, it can be employed to personalize the quality-based
ranking of resources within a folksonomy, which is another outcome of our proposed
SPEAR algorithm.

Our research work described in this thesis presented a thorough investigation of folk-
sonomies and collaborative tagging in the context of information retrieval on the Web.
We demonstrated that the characteristics and qualities of users and Web resources can
be understood by analyzing their implicit interactions in folksonomies, and how this
knowledge can subsequently be exploited to improve information retrieval on the Web.
However, the scientific study of these phenomena is certainly not completed with the
conclusion of this thesis. We believe that our research work, while having succeeded
in answering some important questions, has opened up many possibilities for future
research with respect to social interactions and user collaboration on the Web. In the
next section, we will outline possible future research directions for folksonomies and
the Social Web in general.
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We can only see a short distance
ahead, but we can see plenty
there that needs to be done.

Alan Turing (1912–1954) 9
Future Research Directions

The Web is not purely a product of technologies but also a social phenomenon. Since
its inception two decades ago, it has been exhibiting rapid growth and evolution to
such an extent that it deserves better understanding beyond its technical aspects. The
trend of the Social Web is one of its recent developments, which has been attracting
the attention of a wide range of academic disciplines including psychology, economics,
social sciences, law, and of course computer science. Folksonomies, which we have
studied in this thesis, belong to the prominent and popular features of the Social Web.
Like the Web itself, folksonomies have been shown to feature a simple, local action that
with increasing scale and usage eventually leads to a huge, complex network structure.
They are the result of the social interactions and collective behavior of human users in
the virtual world of the Web and the Internet.

We believe that one direction for future research on the Social Web is the analysis of
the temporal dimension of user activities and, on a larger scale, the interrelations be-
tween the real world and the virtual world of the Web. Since the Social Web is driven by
human users, it means that experiences and events in the real world will also influence
user behavior on the Web, and vice versa. It has been discovered, for example, that
examining the search queries of users on the Web allows for the prediction of flu out-
breaks1. Web applications such as the micro-blogging service Twitter have been used to
spread the word about recent events such as airplane crashes or terrorist attacks faster
than traditional news media. Similarly, we have shown in this thesis how deriving im-
plicit interactions from temporal information of user activities can be used to improve
the quality and robustness of techniques in Web information retrieval. Pursuing studies
such as those described above could therefore help to gain insights into both the real
world and the virtual world.

Users of the Social Web are producing huge amounts of data every day, which con-
tain information about nearly every aspect of the users and their lifes. However, this
data is often retained within isolated Web applications (e.g. photos on Flickr, videos on
YouTube, contacts and social networks on Facebook). The consequence is, for example,
that a video published by a user’s friend on YouTube is not associated with his contact
entry on Facebook. We therefore believe that finding a remedy for these data islands
is another direction for future work. Research and development in areas such as the
Semantic Web [BLHL01] will help to establish a universal infrastructure that facilitates

1Google Flu Trends, http://www.google.org/flutrends/, last retrieved on March 01, 2010.
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the portability and interoperability of data across different domains. In a similar con-
text, we argue that it is worth further research to study how user-contributed data on
the Social Web can be leveraged outside its original domain. These studies include in-
vestigating the correlations between different folksonomies, how collaborative tagging
systems influence or are influenced by other applications on the Web (e.g. whether a
Web resource becomes popular on Web search first, and only then in folksonomies), or
how folksonomies can be translated to ontologies and vice versa. For example, we have
shown in this thesis how the data collected by collaborative tagging systems can be ex-
ploited to improve Web search. Similarly, our proposed expertise ranking algorithm
SPEAR can also be applied to non-folksonomy problems such as citation networks of
academic publications in order to measure the expertise of researchers. We therefore
believe that such studies would yield benefits in a wide range of areas.

Lastly, the popularity and success of folksonomies in practice have been attributed
to their ease of use and the freedom they give to users when annotating resources.
The opposite approach are top-down schemes such as ontologies and taxonomies, of
which a typical example is the Dewey Decimal Classification system [OCL] for cataloging
books in libraries. Of course, each approach comes with its own advantages and dis-
advantages. On a larger scale, an interesting research question is that of the balance
between bottom-up, uncontrolled social interactions and those that are top-down and
controlled. For instance, studies such as [Gil05] have analyzed and compared the qual-
ity of the “bottom-up” Wikipedia and the “top-down” Encyclopedia Britannica. While
the results have so far not reached a definite conclusion, an interesting development
was that, on the one hand, Wikipedia has recently introduced moderated articles and,
on the other hand, Encyclopedia Britannica has been opening itself to end user contri-
butions. Studies that investigate and compare the dynamics and effects of bottom-up
and top-down approaches could therefore improve our knowledge on how to properly
understand and influence collective user behavior, and how to optimize its use with
regard to a specific problem scenario.
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A
Example of an ICRA Content Rating in RDF

Format

The following listing shows an exemplary ICRA content rating in RDF format. The
corresponding HTML snippet is described in Section 7.1.1.

<?xml version="1.0" encoding="iso-8859-1"?>
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:label="http://www.w3.org/2004/12/q/contentlabel#"
xmlns:icra="http://www.icra.org/rdfs/vocabularyv03#">

<rdf:Description rdf:about="">
<dc:creator rdf:resource="http://www.icra.org" />
<dcterms:issued>2009-12-15</dcterms:issued>
<label:authorityFor>http://www.icra.org/rdfs/vocabularyv03#</

label:authorityFor>
</rdf:Description>

<label:Ruleset>
<label:hasHostRestrictions>
<label:Hosts>
<label:hostRestriction>example.com</label:hostRestriction>

</label:Hosts>
</label:hasHostRestrictions>
<label:hasDefaultLabel rdf:resource="#label_1" />

</label:Ruleset>

<label:ContentLabel rdf:ID="label_1">
<rdfs:comment>Label for all/most of website</rdfs:comment>
<icra:na>1</icra:na>
<icra:nb>1</icra:nb>
<icra:nc>1</icra:nc>
<icra:sz>0</icra:sz>
<icra:vz>0</icra:vz>
<icra:lz>0</icra:lz>
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APPENDIX A. EXAMPLE OF AN ICRA CONTENT RATING IN RDF FORMAT

<icra:oz>0</icra:oz>
<icra:cz>0</icra:cz>
<rdfs:label>Exposed breasts; Bare buttocks; Visible genitals;

Sexual material may be, but is not known to be, present;
Violence may be, but is not known to be, present; Potentially
offensive language may be, but is not known to be, present;
Potentially harmful activities may be, but are not known to be,
depicted; User generated content may be, but is not known to

be, present; </rdfs:label>
</label:ContentLabel>

</rdf:RDF>

Listing A.1: An exemplary ICRA content rating.
In this example, the Web site http://www.example.com/ is rated as
depicting exposed breasts, bare buttocks and visible genitals. Other types
of objectionable content may be, but are not known to be, present.
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