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Folksonomies and Collaborative Tagging

» Large and still increasing popularity in the WWW today

H Delicious.com - social bookmarking service by Yahoo!

with 5+ million users

Web pages

|dea: Freely annotating resources with keywords aka “tags”

Result: bottom-up “categorization” by end users, aka “folksonomy”

Used for organizing resources, sharing, self-promotion, ...

Additional effect: new means of resource discovery
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Motivation

Two related goals for our work on expertise in folksonomies:

Identifying and promoting experts for a given topic
Weighting user input, giving (better) recommendations, identify
trendsetters for marketing/advertising/product promotion, etc.

Topic := conjunction or disjunction of one or more tags

@ Demoting spammers
Reduce impact of spam and junk input thereby

improving system quality, performance, operation
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Model of expert users

What makes an expert an expert?

Postulation of two assumptions of expertise for resource discovery,
grounded on literature from computer science (that’s you) and psychology

Mutual reinforcement of user expertise and document quality
Expert users tend to have many high quality documents,
and high quality documents are tagged by users of high expertise.

Discoverers vs. followers

Expert users are discoverers — they tend to be the first to bookmark
and tag high quality documents, thereby bringing them to the attention
of the user community. Think: researchers in academia.
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Model of expert users
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Context of social bookmarking / collaborative tagging
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Model of expert users
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Model of expert users

Bookmarking history of a Web page on Delicious.com
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Timeline Users
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Model of expert users
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Bookmarking history of a Web page
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Model of expert users
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Credit score function C(1) -> earlier discovery = more credit

Discoverers Followers

A

December January February March April May
2009
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SPEAR - SPamming-resistant Expertise Analysis and Ranking

» Based on the HITS (Hypertext Induced Topic Search) algorithm
Hubs: pages that points to good pages
Authorities: pages that are pointed to by good pages

» Expertise and Quality (SPEAR) similar to Hub and Authority (HITS)
Users are hubs — we find useful pages through them
Pages are authorities — provide relevant information

» Difference: only users can point (link) to pages but not vice versa
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Proposed algorithm: SPEAR H
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Proposed algorithm: SPEAR
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Number of users M

Number of pages N

Set of taggings R, = { (user, page, tag, timestamp) | tag = tag }
Credit score function C()

Number of iterations k

Ranked list L of users by expertise in topic tag

Set E to be the vector (1, 1, ..., 1) € Q" E: expertise of users
Set Q to be the vector (1, 1, ..., 1) € O" Q: quality of pages
A & Generate_Adjacency_Matrix(Ry,g, C) } A: user - page incl. credits
fori=1to kdo -
E<QxAT
Q<E X A mutual reinforcement
Normalize E until convergence
Normalize Q
endfor -

L < Sort users by their expertise score in E
return L
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Proposed algorithm: SPEAR E

Adjacency matrix, credits applied

B oo
=) vz IECINEEYE oo

2| I

VRN 10 | 14
u4 0.0 OB 10
= Steve U1 1 0.422
D3 Bill U2 2 0.328
Sergey us 3 0.212
Larry U4 4 0.038
Folksonomy (simplified) Ranked list of users by expertise
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Evaluation

Experimental Setup
» Problem: lack of a proper ground truth for expertise
= “Who is the best researcher in this room?” ©

= Workaround: Inserting simulated users into real-world data from
Delicious.com and check where they end up after ranking

= Real-world data set from Delicious.com comprising 50 tags with
= 515,000 real users (and real spammers)

- 71,300 real Web pages

= 2,190,000 real social bookmarks
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Experimental Setup

» Probabilistic simulation, simulated users generated with four parameters
= P1: Number of user's bookmarks — active or inactive user?
» P2: Newness — fraction of Web pages not already in data set
» P3: Time preference — discoverer or follower?

= P4: Document preference — high quality or low quality?
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Experimental Setup

» Simulation of 6 different user types
Profiles (parameter values) based on recent studies + characteristics of our real-world data sets

= EXxperts
= Geek — lots of high quality documents, discoverer (Distinguished Researcher)
= Veteran — high quality documents, discoverer (Professor)

= Newcomer - high quality documents, follower (PhD student)

= Spammers
= Flooder — lots of random documents, follower (found in Delicious)

* Promoter - some documents (most are his own), discoverer (found in Delicious)

= Trojan — some documents, follower (next-gen spammer)
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Performance baselines

= FREQ(UENCY)
“Most popular” approach — simple frequency count, looks only at quantity.
Seems to be the dominant algorithm in use in practice.

= HITS
Algorithm on which SPEAR is based. Uses mutual reinforcement
but does not analyze temporal dimension of user activity.
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Experts: “ldeal” result
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@ Veterans probabilistic simulation setup

A Newcomers
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Experimental Results — Promoting Experts
semanticweb photography javascript+programming
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» SPEAR differentiated all expert types better than its competitors
» SPEAR kept expected order of “geeks > veterans > newcomers”

= SPEAR was less dependent on user activity (quality before quantity)
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Evaluation

Qualitative analysis: manual examination of Top 10 experts for three tags
“photography”, “semanticweb”, “javascript N programming”

= No spammers found (...phew...)

» These users seemed to be more involved or “serious” about their Delicious
usage, e.g. provided optional profile information such as real name, links to
their Flickr photos or microblog on Twitter

» Their number of bookmarks: from 100’s to 10,000’s
= “semanticweb”: Semantic Web researcher among the experts

» “javascript N programming”: Top 2 experts were professional software
developers
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Spammers: “ldeal” result

(((({({({

s

rank #1 >
@ Trojans Trojans expected to score higher

because they mimic regular users
© Promoters for most of the time

A, Flooders
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Experimental Results — Demoting Spammers
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» SPEAR demoted all spammer types significantly more than its competitors
= Only SPEAR demoted all trojans from the TOP 100 ranks

» FREQ completely failed to demote any spammers
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Evaluation

Qualitative analysis: manual examination of Top 50 users for the heavily
spammed tag “mortgage” (without inserting simulated users)

» Ranked users by their number of bookmarks = FREQ strategy
= 30 out of 50 were (real) spammers, either flooders or promoters

» Compared to FREQ, both SPEAR and HITS were able to remove these
spammers from the Top 50

» SPEAR demoted spammers significantly more than HITS



31

UNIVERSITY OF

Hasso
Plattner SOL!thamthn
Institut School of Electronics

and Computer Science

Summary

Telling Experts from Spammers | Michael G. Noll & Ching-man Au Yeung | SIGIR 2009



32

Hasso UNIVERSITY OF
ﬂ passo - Southampton

|nStitut School of Electronics

and Computer Science

Summary

Conclusions
» SPEAR demoted all spammer types while still ranking experts on top

» SPEAR was much less vulnerable to spammers due to its reduced
dependence on the activeness of users: “quality >> quantity”

Future Work
= Quality score of Web pages deserve more investigation
» Transfer to new problem domains, e.g. blogosphere or music

» Follow-up with user & item recommendation, trend detection

Michael G. Noll | Albert Au Yeung
michael.noll@hpi.uni-potsdam.de '6’ cmay06r@ecs.soton.ac.uk

Hasso Plattner Institute, LIASIT University of Southampton




